• Title/Summary/Keyword: Seismic stations

Search Result 152, Processing Time 0.03 seconds

The background noise characteristics of the broadband seismic stations in KMA (기상청 광대역 지진관측소 배경잡음 특성)

  • Nam, Seong-Tae;Ryoo, Yong-Gyu;Youn, Yong-Hoon
    • Proceedings of the Earthquake Engineering Society of Korea Conference
    • /
    • 2006.03a
    • /
    • pp.49-55
    • /
    • 2006
  • The purpose of the present study is to analyse characteristics of the background noise for the broadband seismic stations in KMA. It is well known that the background noise arises continuously from long period microseism, sea waves, minute changes of atmospheric pressure, seasonal temperature change of the ground surface, culture activities, and etc. The background noise shows spatial and temporal changes and it has various characteristics such as its spectral amplitudes in frequency domain are not constant Such the background noise gives considerable influences on the quality of seismic record. To investigate annual variations, the background noise was separated into high frequency components of above 1Hz More larger average amplitude is found in winter than other seasons. The average amplitude for 12 seismic stations are compared. It is known that the background noise is considerably larger in stations located in island region such as Jeju, Ulleungdo, and Bagryeongdo seismic stations. However the noise is relatively small in inland stations such as Chuncheon, Chungju and Uljin seismic stations.

  • PDF

Investigation on site conditions for seismic stations in Romania using H/V spectral ratio

  • Pavel, Florin;Vacareanu, Radu
    • Earthquakes and Structures
    • /
    • v.9 no.5
    • /
    • pp.983-997
    • /
    • 2015
  • This research evaluates the soil conditions for seismic stations situated in Romania using the horizontal-to-vertical spectral ratio (HVSR). The strong ground motion database assembled for this study consists of 179 analogue and digital strong ground motion recordings from four intermediate-depth Vrancea seismic events with $M_w{\geq}6.0$. In the first step of the analysis, the influence of the earthquake magnitude and source-to-site distance on the H/V curves is evaluated. Significant influences from both the earthquake magnitude and hypocentral distance are found especially for soil class A sites. Next, a site classification method proposed in the literature is applied for each seismic station and the soil classes are compared with those obtained from borehole data and from the topographic slope method. In addition, the success and error rates of this method are computed and compared with other studies from the literature. A more in-depth analysis of the H/V results is performed using data from seismic stations in Bucharest and a comparison of the free-field and borehole H/V curves is done for three seismic stations. The results show large differences between the free-field and the borehole curves. As a conclusion, the results from this study represent an intermediary step in the evaluation of the soil conditions for seismic stations in Romania and the need to perform more detailed soil classification analysis is highly emphasized.

Seismic response of single-arch large-span fabricated subway station structure

  • He, Huafei;Li, Zhaoping
    • Earthquakes and Structures
    • /
    • v.23 no.1
    • /
    • pp.101-113
    • /
    • 2022
  • A new type of fabricated subway station construction technology can effectively solve these problems. For a new type of metro structure form, it is necessary to clarify its mechanical properties, especially the seismic performance. A soil-structure elastoplastic finite element model is established to perform three-dimensional nonlinear dynamic time-history analysis based on the first fabricated station structure-Yuanjiadian station of Changchun Metro Line 2, China. Firstly, the nonlinear seismic response characteristics of the fabricated and cast-in-place subway stations under different seismic wave excitations are compared and analyzed. Then, a comprehensive analysis of several important parameters that may affect the seismic response of fabricated subway stations is given. The results show that the maximum plastic strain, the interlayer deformation, and the internal force of fabricated station structures are smaller than that of cast-in-place structure, which indicates that the fabricated station structure has good deformation coordination capability and mechanical properties. The seismic responses of fabricated stations were mainly affected by the soil-structure stiffness ratio, the soil inertia effect, and earthquake load conditions rarely mentioned in cast-in-place stations. The critical parameters have little effect on the interlayer deformation but significantly affect the joints' opening distance and contact stress, which can be used as the evaluation index of the seismic performance of fabricated station structures. The presented results can better understand the seismic responses and guide the seismic design of the fabricated station.

Seismic Research Network in KIGAM (한국자원연구소 지진 네트워크)

  • 이희일
    • Proceedings of the Earthquake Engineering Society of Korea Conference
    • /
    • 2000.10a
    • /
    • pp.49-56
    • /
    • 2000
  • Instrumental observation of earth quakes in KIGAM was first attempted in the earty 1980`s by using 6 portable seismographs in the vicinity of Yang-San Faults. Now twenty-four permanent stations, which are equipped with short-period or broad-band seismometer, are included in seismic research network in KIGAM, including KSRS array station in Wonju which is consisted of 26 bore-hole stations. The seismic network of KIGAM is also linked to that of KEPRI(Korea Electric Power Research Institute)which is consisted of eight stations installed within and around the nuclear power plants. Owing to real-time data acquisition by telemetry, it became feasible to automatically locate hypocenters of the local events within fifteen minutes by computer data processing system, named KEMS(Korea Earthquake Monitoring System). Results of the hypocenter determination, together with observational data, are compiled and stored in the data base system. And they are published via web site whose URL is http://quake.kigam.re.kr KIGAM is also running t재 permanent geomagnetic stations installed in Daejun and Kyungju. The observed geomagnetic data are transmitted to Earthquake Research Centre in KIGAM by seismic network and compiled for the purpose of earthquake prediction research and other basic geophysical research.

  • PDF

Effect of diurnal variation of background seismic noise level on earthquake detectability (지진관측소 배경잡음 수준의 일변화가 지진 관측 능력에 미치는 영향)

  • Sheen, Dong-Hoon;Shin, Jin-Soo
    • 한국지구물리탐사학회:학술대회논문집
    • /
    • 2009.10a
    • /
    • pp.54-59
    • /
    • 2009
  • Seismic station of high noise level has difficulties detecting relatively weak ground motions due to small earthquakes or teleseismic events because earthquake detectability of seismic station depends on seismic noise level. To figure out the capability of earthquake detection of a seismic network, therefore, seismic noise level of each station also needs to be considered, including the distribution of seismic stations. Recently, it has been known that most of broadband seismic stations in South Korea have affected by cultural noise in the frequencies higher than 1 Hz and show diurnal variations of noise level. In order to analyze the effect of diurnal variation of seismic noise level on earthquake detectability, we used the result of background seismic noise level analysis of seismograms of 30 broadband stations of KIGAM and KMA from 2005 to 2007. This study shows that earthquakes greater than magnitude 2.4 occurring within the Korean Peninsula can be detected at night while those greater than magnitude 2.6 can be detected in the daytime.

  • PDF

Analysis of Site Amplification Characteristics of Several Seismic Stations Distributed in the Southern Korean Peninsula (국내 지진관측소 부지의 지반증폭특성 연구)

  • Kim, Jun-Kyoung
    • Tunnel and Underground Space
    • /
    • v.16 no.6 s.65
    • /
    • pp.486-494
    • /
    • 2006
  • The horizontal to vertical (H/V) ratio technique in spectral domain is a common useful technique to estimate empirical site transfer function. The technique, originally proposed by Nakamura, is proposed to analyse the surface waves in the micrortremor records. The purpose of this paper is to estimate spectral ratio using observed data at the seismic stations distributed within Southern Korean Peninsula from the Fukuoka earthquake including 11 aftershocks. The results show that most of the stations have fairly good amplification characteristics in low frequency band. However, some of the seismic stations show one (resonant frequency specific to the site) or several local peaks of amplification factors with narrow high frequency band. Even though the site amplification characteristics are important information, we should be careful to analyse the observed ground motions from the seismic stations which have several very high amplification peaks for the deconvolution of seismic source and attenuation parameters.

Site characteristics and classification of seismic stations based on observed earthquake data (지진관측 자료를 이용한 국내 지진관측소의 지반특성 분류)

  • 박동희;연관희;장천중
    • Proceedings of the Earthquake Engineering Society of Korea Conference
    • /
    • 2003.03a
    • /
    • pp.61-68
    • /
    • 2003
  • The H/V ratio (Horizontal to Vertical spectral ratio) has been used to infer site amplification without previous knowledge of near-surface geology and in fact may provide useful general site condition information. This method is used to classify the site characteristics of seismic stations in Korea by comparison with known H/V ratios representative of various sites all over the world. In addition, differences between horizontal and vertical kappa values were evaluated for each seismic stations by comparing WV ratio and Weak Motion amplification derived from inversion of stochastic ground motion parameters and were used as index to quantitatively classify the site characteristics.

  • PDF

Characteristics of local events occured in and around the Korean Peninsula in 2002 (한반도 일원에서 발생한 Event 특성)

  • 전정수;제일영;지헌철;박윤경
    • Proceedings of the Earthquake Engineering Society of Korea Conference
    • /
    • 2003.03a
    • /
    • pp.12-15
    • /
    • 2003
  • Korea Institute of Geoscience and Mineral Resources(KIGAM) is operating Wonju Korea Seismic Research Station(KSRS), 29 regional seismic research stations and 5 Korea-China joint seismic stations in China. Also KIGAM is operating Korea Earthquake Monitoring System (KEMS) to archive the real-time data stream and to determine event parameters (epicenter, origin time, and magnitude) by the automatic processing and analyst review. To do this, KEMS used KIGAM's regional seismic network and other institute's network in a near real-time base. From Dec. 1, 2001 to Nov. 30, 2002, 3,827 seismic events were analyzed in a automatic processing procedure and finally 3,437 events were analyzed by analyst and archived. But problem is this event catalog includes not only natural earthquake, but also artificial events produced by the blast. More than 80 % events were concentrated in daytime and many events were concentrated in the confirmed blast sites, Pyeongyang, Pocheon, Yeongjong-do, Donghae city, etc. Because these artificial events are a major potential cause of error when estimating the seismicity of a specific region, discrimination procedure has to be developed in the first place.

  • PDF

Characteristics of Site Amplification of the Broad-band Seismic Stations in Korea (국내 광대역 지진관측소의 부지증폭 특성)

  • Kim, Seo-Young;Kim, Sung-Kyun
    • Journal of the Korean earth science society
    • /
    • v.30 no.7
    • /
    • pp.810-823
    • /
    • 2009
  • One of the critical factors in accurate determination of earthquake source parameters, and in prediction of seismic hazards is the detailed information related to the site amplification characteristics. The site amplification characteristics of the broad-band seismic stations in Korea were estimated as a function of frequency in the range of 0.2 to 20 Hz. A total of 1275 seismograms recorded from 43 earthquakes observed from 2003 to 2008 in the southern Korean Peninsula were used. It was found that the site amplification ratios for 28 stations estimated from the inversion of the ground motion model were approximately concordant with those obtained from the horizontal-to-vertical (H/V) spectral ratio except for some stations. The spectral site amplification characteristics obtained in this study did not show any considerable spatial distribution. It revealed to be largely correlated with the degree of weathering rather than the basement rock type. Considering the spectral site amplification ratio, 28 broad-band stations were classified into four groups and the characteristics of each group were described in the text.

Characterizing the Performance of New Seismic Stations in Southeastern Region, Korea Using Seismic Noise Levels (배경잡음 수준 분석에 의한 동남권 신규 관측소 성능 특성 평가)

  • Shin, Jin Soo;Seong, Yun-Jeong;Son, Minkyung
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.23 no.6
    • /
    • pp.321-327
    • /
    • 2019
  • We performed seismic noise level analysis to access the proper functioning of 11 newly established seismic stations in the southeastern region of Korea. One-hour long segments of seismograms were selected from the continuous data of the 3 elements for 61 days from March 1, 2019. For each segment of data, the power spectral density (PSD) was estimated from the continuous back ground noise data of the 3 elements for periods ranging from 0.02~100 s. The median noise levels (NLs) of the stations were compared with the new noise model (NNM) of USGS and NLs of station TJN installed in a tunnel on a granite basement. We observed that the NLs of the newly installed seismometers were between the upper and lower limit of the NNM. In a comparison with the noise level of station TJN, the new seismometers had their own noteworthy features. The NLs from accelerometers (Epi-sensors) were ~ 40 dB higher than the NLs from velocimeters (STS-sensors) for periods > 10 s, which is because the small and light Epi-sensors are sensitive to environmental changes. Daily and weekly variations in spectral noise level were observed clearly in short periods < 1 s, and these are considered to be related to human activities. The seismometers in boreholes showed ~20 dB weaker NLs in the cultural noise band. The NLs of accelerometers at a depth of 30 m were also much lower by 30 dB for long periods > 10 sec. Overall the functioning of the new velocimeter and accelerometer stations was reliable for periods ranging from 0.02~100 s and 0.02~10 s, respectively.