• Title/Summary/Keyword: Seismic stability

Search Result 367, Processing Time 0.023 seconds

Effect of Seismic Load on Residential RC Buildings under Construction Considering Construction Period (시공기간을 고려한 주거용 철근콘크리트 건물의 시공 중 지진하중 영향 분석)

  • Choi, Seong-Hyeon;Kim, Jea-Yo
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.35 no.4
    • /
    • pp.235-242
    • /
    • 2022
  • Compared with buildings that have already been constructed, buildings under construction may be more vulnerable to such natural disasters as earthquakes because the concrete strength is not yet sufficient. Currently, Korean design standards present minimum performance targets for each seismic grade of buildings, but the seismic load for design is based on a return period of 2400 years. However, because the construction period of the building is much shorter than the period of use of the building, the application of the earthquake return period of 2400 years to buildings under construction may be excessive. Therefore, in this study, a construction stage model of buildings with 5, 15, 25, and 60 floors was created to analyze earthquake loads during construction of residential reinforced concrete (RC) buildings. The structural stability was confirmed by applying reduced seismic loads according to the return period. As a result, the structural stability was checked for an earthquake of the return period selected according to the construction period, and the earthquake return period that can secure structural safety according to the size of the building was confirmed.

Seismic Performance Evaluation of Existing Buildings Using Equivalent Double Diagonal Strut Model for Corrugated Steel Plate Walls (파형강판벽의 등가 양방향 대각 스트럿 모델을 이용한 기존 건물의 내진성능 평가)

  • Lee, Chang-Hwan;Son, Joo-Ki
    • Journal of Korean Association for Spatial Structures
    • /
    • v.20 no.1
    • /
    • pp.87-94
    • /
    • 2020
  • A corrugated steel plate wall (CSPW) system is advantageous to secure the strength and stiffness required for lateral force resistance because of its high out-of-plane stability. It can also stably dissipate large amounts of energy even after peak strength. In this paper, a preliminary study has been carried out to use the CSPW system in the seismic retrofit of existing reinforced concrete (RC) moment frame buildings. The seismic performance for an example building was evaluated, and then a step-by-step retrofit design procedure for the CSPW was proposed. An equivalent analytical model of the CSPW was also introduced for a practical analysis of the retrofitted building, and the strengthening effect was finally evaluated based on the results of nonlinear analysis.

Application of TSP Suvey to Predict the Ground Conditions Ahead of Tunnel Face (터널막장 전방 파악을 위한 TSP(Tunnel Seismic Prediction) 탐사 사례 연구)

  • Cho, Sung-Won;Lee, Hyo;Yoo, Jae-Won;Kim, Do-Hun Dave;Nam, Seung-Hyeok
    • Explosives and Blasting
    • /
    • v.31 no.2
    • /
    • pp.40-49
    • /
    • 2013
  • To predict ground conditions ahead of the tunnel face, seismic refraction survey has been widely used. But due to the development in seismic equipment and techniques, tomography using borehole and others are actively applied in recent years. This study has a purpose to prevent stability problems during excavation and construction of tunnels by predicting unfavorable ground conditions such as fault, fractured zone and rock quality variation zone ahead of the tunnel face using TSP survey equipment. In this study, the validity of predicting ground conditions ahead of tunnel face by TSP survey has been evaluated through the case study in the road construction site.

Three-dimensional limit analysis of seismic stability of tunnel faces with quasi-static method

  • Zhang, B.;Wang, X.;Zhang, J.S.;Meng, F.
    • Geomechanics and Engineering
    • /
    • v.13 no.2
    • /
    • pp.301-318
    • /
    • 2017
  • Based on the existing research results, a three-dimensional failure mechanism of tunnel face was constructed. The dynamic seismic effect was taken into account on the basis of quasi-static method, and the nonlinear Mohr-Coulomb failure criterion was introduced into the limit analysis by using the tangent technique. The collapse pressure along with the failure scope of tunnel face was obtained through nonlinear limit analysis. Results show that nonlinear coefficient and initial cohesion have a significant impact on the collapse pressure and failure zone. However, horizontal seismic coefficient and vertical seismic proportional coefficient merely affect the collapse pressure and the location of failure surface. And their influences on the volume and height of failure mechanism are not obvious. By virtue of reliability theory, the influences of horizontal and vertical seismic forces on supporting pressure were discussed. Meanwhile, safety factors and supporting pressures with respect to 3 different safety levels are also obtained, which may provide references to seismic design of tunnels.

Seismic Qualification of the Air Cleaning Units for Nuclear Power Plant Ulchin 5&6 (울진 원자력발전소 5,6 호기용 공기정화기에 대한 내진검증)

  • Kim, Jin-Young;Rhee, Hui-Nam;Lee, Joon-Keun
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.26 no.7
    • /
    • pp.1376-1383
    • /
    • 2002
  • Seismic qualification of the Air Cleaning Units for nuclear power plant Ulchin 5&6 has been performed with the guideline of ASME Section III and IEEE 344 code. By using the structural and geometrical similarity analysis, the three models to be analyzed are condensed into a single model and, at the same time, the excitation forces and other operating loads for each model are encompassed with respect to different loading conditions. As the fundamental frequencies of the structure are found to be less than 33Hz, which is the upper frequency limit of the seismic load, response spectrum analysis using ANSYS is performed in order to combine the modal stresses within the frequency limit. In order to confirm the structural and electric stability of the major components, modal analysis theory is adopted to derive the required response spectrum at the component locations. As the all combined stresses obtained from the above procedures are less than allowable stresses and no mechanical or electrical failures are found from the seismic testing, the authors confirm the safety of the nuclear equipments Air Cleaning Units studied in this paper.

Seismic Qualification of the Air Cleaning Units for Nuclear Power Plant Ulchin 5&6 (울진 원자력발전소 5,6호기용 공기정화기에 대한 내진검증)

  • Lee, Joon-Keun;Kim, Jin-Young;Chung, Phil-Joong
    • Proceedings of the KSME Conference
    • /
    • 2001.06b
    • /
    • pp.404-409
    • /
    • 2001
  • Seismic qualification of the Air Cleaning Units for nuclear power plant Ulchin 5&6 has been performed with the guideline of ASME Section III and IEEE 344 code. By using the structural and geometrical similarity analysis, the three models to be analyzed is condensed into a single model and, at the same time, the excitation forces and other operating loads for each model are encompassed with respect to different loading conditions. As the fundamental frequencies of the structure are found to be less than 33Hz, which is the upper frequency limit of the seismic load, response spectrum analysis using ANSYS is performed in order to combine the modal stresses within the frequency limit. In order to confirm the structural and electric stability of the major components, modal analysis theory is adopted to derive the required response spectrum at the component locations. As the all combined stresses obtained from the above procedures are less than allowable stresses and no mechanical or electrical failures are found from the seismic testing, the authors confirm the safety of the nuclear equipments Air Cleaning Units studied in this paper.

  • PDF

Mechanical robustness of AREVA NP's GAIA fuel design under seismic and LOCA excitations

  • Painter, Brian;Matthews, Brett;Louf, Pierre-Henri;Lebail, Herve;Marx, Veit
    • Nuclear Engineering and Technology
    • /
    • v.50 no.2
    • /
    • pp.292-296
    • /
    • 2018
  • Recent events in the nuclear industry have resulted in a movement towards increased seismic and LOCA excitations and requirements that challenge current fuel designs. AREVA NP's GAIA fuel design introduces unique and robust characteristics to resist the effects of seismic and LOCA excitations. For demanding seismic and LOCA scenarios, fuel assembly spacer grids can undergo plastic deformations. These plastic deformations must not prohibit the complete insertion of the control rod assemblies and the cooling of the fuel rods after the accident. The specific structure of the GAIA spacer grid produces a unique and stable compressive deformation mode which maintains the regular array of the fuel rods and guide tubes. The stability of the spacer grid allows it to absorb a significant amount of energy without a loss of load-carrying capacity. The GAIA-specific grid behavior is in contrast to the typical spacer grid, which is characterized by a buckling instability. The increased mechanical robustness of the GAIA spacer grid is advantageous in meeting the increased seismic and LOCA loadings and the associated safety requirements. The unique GAIA spacer grid behavior will be incorporated into AREVA NP's licensed methodologies to take full benefit of the increased mechanical robustness.

Seismic Qualification of the Main Control Board for Nuclear Power Plant (원자력발전소용 주 제어반의 내진 검증)

  • 변훈석;이준근
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.12 no.11
    • /
    • pp.856-863
    • /
    • 2002
  • Seismic qualification of the main control board(MCB) for the nuclear power plant Ulchin 5 and 6 has been performed with the guideline of ASME Section III and IEEE 344 code. As the size and weight of the MCB are too large and heavy to excite using the excitation table, finite element analysis is used in order to investigate the dynamic behaviors and structural integrity of the MCB. As the fundamental frequencies of the equipment are found to be less than 33 Hz, which is the upper frequency limit for the dynamic analysis, response spectrum analysis using ANSYS is performed in order to combine the modal stresses within the frequency limit. In order to confirm the electrical stability of the major components of the MCB. modal analysis theory has been adopted to derive the required response spectra at the component locations. As the all combined stresses obtained from the above procedures are less than the allowable stresses and no mechanical or electrical failures are found from the seismic testing, the authors can confirm the safety of the nuclear equipment MCB under the given seismic loading conditions.

Application of Energy-Dissipating Sacrificial Device(EDSD) for Enhancing Seismic Performance of Bridges (교량의 내진성능 향상을 위한 희생부재형 에너지소산장치(EDSD)의 적용에 관한 연구)

  • Kim, Sang-Hyo;Cho, Kwang-Yil;Kim, Hae-Young
    • Proceedings of the Earthquake Engineering Society of Korea Conference
    • /
    • 2006.03a
    • /
    • pp.445-452
    • /
    • 2006
  • A new Energy-Dissipating Sacrificial Device(EDSD) is proposed, which can effectively dissipate the energy stored in the structures during seismic actions. A mathematical 3-D bridge models and analysis techniques are developed to represent the non-linear behavior of the EDSD, various seismic responses of a sample bridge with the EDSD are analyzed in terms of energy, member forces and deformation using the developed analysis method. And the EDSD is tested and certified it's behavior and stability to apply on exiting bridges. The EDSD can be able to dissipate a large amount of energy and therefore it can prevent the pier's excessive forces under seismic excitations and EDSD and its connected members are also stable. Additionally, the method and guidelines of an optimum EDSD design are proposed in terms of installation method and decision of number of EDSD. The Proposed EDSD under seismic excitations can significantly decrease the excessive storing energy in the bridge structures and reduce the relative displacements of each superstructure to the ground. The EDSD is also found to function as a structural fuse under strong ground motions, sacrificing itself to absorb the excessive energy. Consequently, economical enhancement of the seismic performance of bridges can be achieved by employing the newly developed energy dissipation sacrificial device(EDSD).

  • PDF

Development of Computational Tools for Seismic Design of Architectural Components in Negative Pressure Isolation Wards (음압격리병동의 건축 비구조요소 내진설계를 위한 전산도구 개발)

  • Chu, Yu Rim;Kim, Tae Jin
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.26 no.3
    • /
    • pp.127-136
    • /
    • 2022
  • Recently, an unprecedented emerging infectious disease has rapidly spread, causing a global shortage of wards. Although various temporary beds have appeared, the supply of wards specializing in infectious diseases is required. Negative pressure isolation wards should maintain their function even after an earthquake. However, the current seismic design standards do not guarantee the negative pressure isolation wards' operational (OP) performance level. For this reason, some are not included in the design target even though they are non-structural elements that require seismic design. Also, the details of non-structural elements are usually determined during the construction phase. It is often necessary to complete the stability review and reinforcement design for non-structural elements within a short period. Against this background, enhanced performance objectives were set to guarantee the OP non-structural performance level, and a computerized tool was developed to quickly perform the seismic design of non-structural elements in the negative pressure isolation wards. This study created a spreadsheet-based computer tool that reflects the components, installation spacing, and design procedures of non-structural elements. Seismic performance review and design of the example non-structural elements were conducted using the computerized tool. The strength of some components was not sufficient, and it was reinforced. As a result, the time and effort required for strength evaluation, displacement evaluation, and reinforcement design were reduced through computerized tools.