• 제목/요약/키워드: Seismic slope stability

검색결과 65건 처리시간 0.026초

토사 절토사면 안정성 영향인자의 민감도 분석 (Sensitivity Analyses of Influencing Factors on Stability in Soil Cut Slope)

  • 유남재;박병수;전상현;조한기
    • 산업기술연구
    • /
    • 제26권B호
    • /
    • pp.73-81
    • /
    • 2006
  • A sensitivity analysis about effects of influencing factors on the stability of Soil cut slope was performed. Slope stability analyses were carried out under dry, rainy and seismic conditions. Dominant factors controlling the slope stability were chosen such as cohesion and internal friction angle, unit weight of soil, water table and seismic horizontal coefficient used for the slope stability during earthquake. Parametric stability analysis with those factors was performed for sensitivity analysis. As results of analyzing the sensitivity of factors under dry and rainy conditions, effects of cohesion, internal friction angle and unit weight of soil on the stability of slope are more critical in the dry condition than in the rainy condition. Cohesion and internal friction angle are more dominant factors influencing the slope stability irrespective of dry or rainy conditions than unit weight of soil and the horizontal seismic coefficient. The unit weight and the horizontal seismic coefficient affects crucially the stability according to conditions of slope formation and dry or rainy seasons. For the effect of horizontal seismic coefficient on stability of slope, safety factor of slope is not affected significantly by dry or rainy conditions. However, increase of the horizontal seismic coefficient under the rainy condition floes reduce the safety factor significantly rather than the dry condition. Therefore, it is needed that the location of the water table is assigned appropriately to satisfy the required safety factor of stability in the case of checking slope stability for the rainy and seismic conditions.

  • PDF

Assessment of seismic stability of finite slope in c-ϕ soils - a plasticity approach

  • Shibsankar, Nandi;G., Santhoshkumar ;Priyanka, Ghosh
    • Geomechanics and Engineering
    • /
    • 제31권5호
    • /
    • pp.439-452
    • /
    • 2022
  • A forecast of slope behavior during catastrophic events, such as earthquakes is crucial to recognize the risk of slope failure. This paper endeavors to eliminate the significant supposition of predefined slip surfaces in the slope stability analysis, which questions the relevance of simple conventional methods under seismic conditions. To overcome such limitations, a methodology dependent on the slip line hypothesis, which permits an automatic generation of slip surfaces, is embraced to trace the extreme slope face under static and seismic conditions. The effect of earthquakes is considered using the pseudo-static approach. The current outcomes developed from a parametric study endorse a non-linear slope surface as the extreme profile, which is in accordance with the geomorphological aspect of slopes. The proposed methodology is compared with the finite element limit analysis to ensure credibility. Through the design charts obtained from the current investigation, the stability of slopes can be assessed under seismic conditions. It can be observed that the extreme slope profile demands a flat configuration to endure the condition of the limiting equilibrium at a higher level of seismicity. However, a concurrent enhancement in the shear strength of the slope medium suppresses this tendency by offering greater resistance to the seismic inertial forces induced in the medium. Unlike the traditional linear slopes, the extreme slope profiles mostly exhibit a steeper layout over a significant part of the slope height, thus ensuring a more optimized solution to the slope stability problem. Further, the susceptibility of the Longnan slope failure in the Huining-Wudu seismic belt is predicted using the current plasticity approach, which is found to be in close agreement with a case study reported in the literature. Finally, the concept of equivalent single or multi-tiered planar slopes is explored through an example problem, which exhibits the appropriateness of the proposed non-linear slope geometry under actual field conditions.

지진시 사면안정해석에 있어서의 진도법과 지진응답해석의 결과 비교 (Compare Seismic Coefficient Method and Seismic Response Analysis for Slope during Earthquake)

  • 박성진;오병현;박춘식;황성춘
    • 한국지반공학회:학술대회논문집
    • /
    • 한국지반공학회 2000년도 가을 학술발표회 논문집
    • /
    • pp.193-200
    • /
    • 2000
  • Numerical analysis of slope stability is presented using slice method, static seismic analysis methods, and earthquake response analysis methods. Static seismic force is considered as 0.2g while vertical static seismic force is not considered in analysis. For earthquake response analysis, Hachinohe-wave is applied. Safety factor calculated using slice method for failure surface. Calculating methods are Bishop's method and Janhu's method. Static seismic analysis was applied using Mhor-Coulomb model and earthquake response analysis was applied using non-linear elastic model.

  • PDF

수정진도법에 의한 댐사면 안정해석 (Slope Stability Analysis of Filldams by Modified Seismic Intensity Method)

  • 신동훈;이종욱
    • 한국지반공학회:학술대회논문집
    • /
    • 한국지반공학회 2000년도 가을 학술발표회 논문집
    • /
    • pp.223-228
    • /
    • 2000
  • The current slope stability analysis of a filldam is based on the limit equilibrium method, and in calculation of safety factor during earthquake, adopts the seismic intensity method in which it considers a uniform seismic force from dam foundation to crest. However the observed behaviour of filldam during earthquake shows some different behaviour in that at the crest the measured acceleration is usually several times the ground acceleration. In this study, slope stability calculations of a filldam are provided based on the modified seismic intensity method, which can take into account the amplification phenomena of acceleration in the upper part of dam. And also the results of calculations are compared with that of current seismic intensity method.

  • PDF

한계해석을 이용한 토사면의 항복지진계수 산정도표 제안 연구 (A Study on the Development of a Stability Chart for Yield Seismic Coefficient of Soil Slope Using Limit Analysis)

  • 최상호;김종민
    • 한국지반공학회논문집
    • /
    • 제26권3호
    • /
    • pp.47-57
    • /
    • 2010
  • Newmark 활동블록법을 이용하여 지진시 토사면의 영구변위를 산정할 경우 항복지진계수의 결정은 매우 중요하다. 그러나 기존에 제안된 항복지진계수는 일반적으로 한계평형해석에 기초하고 있어 역학적조건 중 평형조건만을 만족하므로 역학적으로 엄밀하지 못하다. 따라서 기 제안된 항복지진계수를 이용하여 토사면의 영구변위를 산정할 경우 문제점를 야기할 수 있다. 한계해석은 역학적으로 엄밀한 해의 범위를 산정하는 해석기법으로 항복지진계수의 역학적 엄밀성을 판단하는데 유용하다. 본 연구에서는 안정수, 사면경사, 지반물성 등에 따른 다양한 해석조건을 고려하여 실무적용에 유용한 항복지진계수 산정도표를 제안하였다.

Analytical solution of seismic stability against overturning for a rock slope with water-filled tension crack

  • Zhang, Yanjun;Nian, Tingkai;Zheng, Defeng;Zheng, Lu
    • Geomechanics and Engineering
    • /
    • 제11권4호
    • /
    • pp.457-469
    • /
    • 2016
  • Steep rock slope with water-filled tension crack will happen to overturn around the toe of the slope under seismic loading. This failure type is completely different from the common toppling failure occurring in anti-dipping layered rock mass slopes with steeply dipping discontinuities. This paper presents an analytical approach to determine the seismic factor of safety against overturning for an intact rock mass slope with water-filled tension crack considering horizontal and vertical seismic coefficients. This solution is a generalized explicit expression and is derived using the moment equilibrium approach. A numerical program based on discontinuous deformation analysis (DDA) is adopted to validate the analytical results. The parametric study is carried out to adequately investigate the effect of horizontal and vertical seismic coefficients on the overall stability against overturning for a saturated rock slope under two water pressure modes. The analytical results show that vertically upward seismic inertia force or/and second water pressure distribution mode will remarkably decrease the slope stability against overturning. Finally, several representative design charts of slopes also are presented for the practical application.

강우와 연직 지진계수의 영향도 분석을 위한 석회암지역의 무한사면 안정해석 (Infinite Slope Stability to Analyze the Effects of Rainfall and Vertical Seismic Coefficient in Limestone Area)

  • 문성우;김형신;윤현석;서용석
    • 지질공학
    • /
    • 제30권2호
    • /
    • pp.175-184
    • /
    • 2020
  • 국내에서는 비탈면을 대상으로 유사정적해석 시 수평 지진계수에 대한 적용 규정과 적용 사례들이 많이 있지만 연직 지진계수에 대한 규정이나 사례는 미비한 실정이다. 본 연구에서는 연직 지진계수의 영향도를 검토하고자 단양군 단양읍 ◯◯리를 대상으로 현장조사 및 실내시험을 수행하고, 이를 반영하여 무한사면 안정해석 기반의 유사정적 사면안정해석을 수행하였다. 분석 결과 지진규모가 5 이하인 경우에는 연직 지진계수의 영향이 거의 없는 것으로 분석되며, 지진규모가 6 이상인 경우에는 연직 지진계수가 안전율 1.1 이하의 불안정 영역을 크게 증가시키는 것으로 나타난다. 이러한 경향은 강우가 없는 조건보다 강우가 있는 조건에서 더욱 뚜렷하게 나타난다.

사면안정성 영향인자의 민감도 분석 (Sensitivity Analyses of Influencing Factors on Slope Stability)

  • 박병수;전상현;조광준;유남재
    • 한국방재학회 논문집
    • /
    • 제10권3호
    • /
    • pp.91-100
    • /
    • 2010
  • 본 논문에서는 절 성토 사면의 안정성에 영향을 미치는 영향인자의 민감도 분석을 수행하였다. 사면안정성 해석은 건기 및 우기조건, 지진시로 구별하여 해석하였다. 건기와 우기 조건에 대한 민감도 분석결과, 절토사면에서는 점착력, 내부마찰각, 단위 중량 등이 사면안정성에 미치는 영향은 우기조건 보다 더 큼을 알 수 있고, 성토사면에서는 건기와 우기조건에서 모두 유사한 영향을 주는 것으로 나타났다. 또한 수평지진계수는 전체사면에서 건기와 우기조건에 관계없이 유사한 값의 범위로 영향을 미치는 것으로 분석되었다. 강도정수인 점착력과 내부마찰각은 건기 및 우기조건에 관계없이 사면안정성에 단위중량, 지진계수에 비하여 상대적으로 큰 영향을 미치는 영향인자로 나타났다.

1차원 지반응답해석을 통한 사면의 증폭특성 규명 (Estimation of amplification of slope via 1-D site response analysis)

  • 윤세웅;박두희
    • 한국지반공학회:학술대회논문집
    • /
    • 한국지반공학회 2009년도 춘계 학술발표회
    • /
    • pp.620-625
    • /
    • 2009
  • The seismic slope stability is most often evaluated by the pseudo-static limit analysis, in which the earthquake loading is simplified as static inertial loads acting in horizontal and/or vertical directions. The transient loading is represented by constant acceleration via the pseudostatic coefficients. The result of a pseudostatic analysis is governed by the selection of the value of the pseudostatic coefficient. However, selection of the value is very difficult and often done in an ad hoc manner without a sound physical reasoning. In addition, the maximum acceleration is commonly estimated from the design guideline, which cannot accurately estimate the dynamic response of a slope. There is a need to perform a 2D dynamic analysis to properly define the dynamic response characteristics. This paper develops the modified one-dimensional seismic site response analysis. The modified site response analysis adjusts the density of the layers to simulate the change in mass and weight of the layers of the slope with depth. Multiple analyses are performed at various locations within the slope to estimate the change in seismic response of the slope. The calculated peak acceleration profiles with depth from the developed procedure are compared to those by the two-dimensional analyses. Comparisons show that the two methods result in remarkable match.

  • PDF

철도노반과 기초지반(고성토사면) 안정에 관한 연구 (A Study on the Stability for the Railroad Bed and the Foundation Ground (High Landfill Slope))

  • 오명렬
    • 한국철도학회:학술대회논문집
    • /
    • 한국철도학회 2006년도 추계학술대회 논문집
    • /
    • pp.1391-1404
    • /
    • 2006
  • Recently, medium or slight earthquakes was occurred in the Korea Peninsula and seismic design is considered seriously in the railroad facilities as case of other civil engineering facilities. In this study, it selected the Seongnam-Yeoju railroad 6th section and seismic analysis was accomplished. Specially, unlike existing seismic analysis using the artificial earthquake and the real earthquake, seismic analysis using a seismic vibration and the train vibration was accomplished. 1-D and 2-D ground response analysis of the railroad bed and 3-D Finite element analysis in the bridge connection section of high landfill slope was accomplished. Also, slope stability analysis and the evaluation of liquefaction was accomplished.

  • PDF