• 제목/요약/키워드: Seismic retrofit system

검색결과 94건 처리시간 0.029초

교체 가능한 강재 브레이스 시스템의 슬라이딩 슬롯 길이에 따른 내진성능에 관한 실험적 연구 (An Experimental Study on Seismic Performance of Replaceable Steel Brace System with Sliding Slot)

  • 김윤성;노경민;김민숙;이영학
    • 한국공간구조학회논문집
    • /
    • 제23권4호
    • /
    • pp.35-42
    • /
    • 2023
  • The purpose of this study is to experimentally analyze the seismic performance of column with RSB (Replaceable Steel Brace), a steel brace system with slot length as a variable. To evaluate the seismic performance of the RSB, three specimens were manufactured and subjected to cyclic loading tests. The length of the sliding slots were considered to be 5 mm and 10mm to enable the brace to resist the load from the initiation of flexural crack and shear crack. As a result of the test, the specimen reinforced with the RSB showed improved maximun load and effective stiffness, and energy dissipation capacity compared to the non-reinforced specimens. The specimens with 5mm sliding slot showed little difference in test result compared to the specimen with a 10mm sliding slot, indicating that the length of sliding slot has little influence on the effectiveness of RSB.

Retrofit strategy issues for structures under earthquake loading using sensitivity-optimization procedures

  • Manolis, G.D.;Panagiotopoulos, C.G.;Paraskevopoulos, E.A.;Karaoulanis, F.E.;Vadaloukas, G.N.;Papachristidis, A.G.
    • Earthquakes and Structures
    • /
    • 제1권1호
    • /
    • pp.109-127
    • /
    • 2010
  • This work aims at introducing structural sensitivity analysis capabilities into existing commercial finite element software codes for the purpose of mapping retrofit strategies for a broad group of structures including heritage-type buildings. More specifically, the first stage sensitivity analysis is implemented for the standard deterministic environment, followed by stochastic structural sensitivity analysis defined for the probabilistic environment in a subsequent, second phase. It is believed that this new generation of software that will be released by the industrial partner will address the needs of a rapidly developing specialty within the engineering design profession, namely commercial retrofit and rehabilitation activities. In congested urban areas, these activities are carried out in reference to a certain percentage of the contemporary building stock that can no longer be demolished to give room for new construction because of economical, historical or cultural reasons. Furthermore, such analysis tools are becoming essential in reference to a new generation of national codes that spell out in detail how retrofit strategies ought to be implemented. More specifically, our work focuses on identifying the minimum-cost intervention on a given structure undergoing retrofit. Finally, an additional factor that arises in earthquake-prone regions across the world is the random nature of seismic activity that further complicates the task of determining the dynamic overstress that is being induced in the building stock and the additional demands placed on the supporting structural system.

Development of Large Tuned Mass Damper with Stroke Control System for Seismic Upgrading of Existing High-Rise Building

  • Hori, Yusuke;Kurino, Haruhiko;Kurokawa, Yasushi
    • 국제초고층학회논문집
    • /
    • 제5권3호
    • /
    • pp.167-176
    • /
    • 2016
  • This paper describes a large tuned mass damper (TMD) developed as an effective seismic control device for an existing highrise building. To realize this system, two challenges needed to be overcome. One was how to support a huge mass that has to move in any direction, and the second was how to control mass displacement that reaches up to two meters. A simple pendulum mechanism with strong wires was adopted to solve the first problem. As a solution to the important latter problem, we developed a high-function oil damper with a unique hydraulic circuit. When the mass velocity reaches a certain value, which was predetermined by considering the permissible displacement, the damper automatically and drastically increases its damping coefficient and limits the mass velocity. This velocity limit function can effectively and stably control the mass displacement without any external power. This paper first examines the requirements of the TMD using a simple model and clarifies the constitution of the actual TMD system. Then the seismic upgrading project of an existing high-rise building is outlined, and the developed TMD system and the results of performance tests are described. Finally, control effects for design earthquakes are demonstrated through response analyses and construction progress is introduced.

반복하중을 받는 철근콘크리트 골조 및 보강시스템의 내진성능 평가 및 개선 (Improvement and Evaluation for Seismic Resistant Capacity of Reinforced Concrete Frame and Braced System under Load Reversals)

  • 김광연;하기주;신종학;이상목;이영범;조용태
    • 한국콘크리트학회:학술대회논문집
    • /
    • 한국콘크리트학회 2000년도 가을 학술발표회논문집(I)
    • /
    • pp.109-114
    • /
    • 2000
  • Recently, it is required to improve the structural performance, such as durability and earthquake resistant capacity due to the deterioration of structural components in the existing reinforced concrete building with the old aging and transition of design code. Therefore, the new technology should be developed, such as seismic retrofit and improvement of structural performance in the existing reinforced concrete building. This analytical study was performed to verify the effects of basic and reinforcing system in the reinforced concrete building. The analytical results by nonlinear finite element method were compared with the experimental results and the comparisons are judged to be good.

  • PDF

철근콘크리트 프레임 면내 조적 허리벽의 내진보강성능 - 하니컴 시스템을 적용한 보강방법을 중심으로 - (Seismic Performance of Reinforced Concrete frame with masonry waist-high wall. - Focused on retrofit method using Honeycomb System -)

  • 신재상;박홍욱;조승호;이상현;정란
    • 한국콘크리트학회:학술대회논문집
    • /
    • 한국콘크리트학회 2009년도 춘계 학술대회 제21권1호
    • /
    • pp.107-108
    • /
    • 2009
  • 본 연구에서는 얇은 육각 기둥의 패턴을 이루고 있는 스틸제 하니컴형 보강재와 방청성 내진 모르타르 및 불연성 마감 코팅제를 사용하여, 철근콘크리트 기둥과 조적허리벽의 전단강도와 연성능력을 향상시켜 내진보강이 이루어 지도록 하는 방법을 제시하고 실험하고자 한다.

  • PDF

연속지진에 대한 지진 취약 철근콘크리트 건축물의 FRP 재킷 보수 전략 연구 (Repair Scheme of FRP Column Jacketing System for Seismically-vulnerable RC Buildings under Successive Earthquakes)

  • 김수빈;김혜원;박재은;신지욱
    • 한국공간구조학회논문집
    • /
    • 제23권2호
    • /
    • pp.79-90
    • /
    • 2023
  • Existing reinforced concrete (RC) frame buildings have seismic vulnerabilities because of seismically deficient details. In particular, since cumulative damage caused by successive earthquakes causes serious damage, repair/retrofit rehabilitation studies for successive earthquakes are needed. This study investigates the repair effect of fiber-reinforced polymer jacketing system for the seismically-vulnerable building structures under successive earthquakes. The repair modeling method developed and validated from the previous study was implemented to the building models. Additionally, the main parameters of the FRP jacketing system were selected as the number of FRP layers associated with the confinement effects and the installation location. To define the repair effects of the FRP jacketing system with the main parameters, this study conducted nonlinear time-history analyses for the building structural models with the various repairing scenarios. Based on this investigation, the repair effects of the damaged building structures were significantly affected by the damage levels induced from the mainshocks regardless of the retrofit scenarios.

초기 손상을 입은 비연성 철근콘크리트 골조의 FRP재킷으로 보수된 기둥의 수치해석모델 (Numerical Column Model for Damaged Non-ductile Reinforced Concrete Frame Repaired Using FRP Jacketing System)

  • 신지욱;전종수;김준희
    • 한국지진공학회논문집
    • /
    • 제22권5호
    • /
    • pp.291-298
    • /
    • 2018
  • Existing reinforced concrete building structures have seismic vulnerabilities under successive earthquakes (or mainshock-aftershock sequences) due to their inadequate column detailing, which leads to shear failure in the columns. To improve the shear capacity and ductility of the shear-critical columns, a fiber-reinforced polymer jacketing system has been widely used for seismic retrofit and repair. This study proposed a numerical modeling technique for damaged reinforced concrete columns repaired using the fiber-reinforced polymer jacketing system and validated the numerical responses with past experimental results. The column model well captured the experimental results in terms of lateral forces, stiffness, energy dissipation and failure modes. The proposed column modeling method enables to predict post-repair effects on structures initially damaged by mainshock.

지진으로 인한 교통망 피해추정 기법 (Seismic Performance of Transportation Networks)

  • 김상훈;;김종인
    • 한국지진공학회논문집
    • /
    • 제8권3호
    • /
    • pp.43-52
    • /
    • 2004
  • 본 연구는 캘리포니아 내 고속도로망을 대상으로 지진발생 후 교통흐름의 변화를 평가하는 기법에 대하여 이루어졌으며, 고속도로망 상에 위치한 교량의 손상정도가 평가기법의 가장 기본적인 요소로 사용되었다. 본 연구에 사용된 교량의 지진취약도는 PGA 또는 PGV의 함수로 나타내어졌고, 1994년 Northridge 지진과 일련의 시나리오 지진에 대하여 교통망 손상 평가를 수행하였다. 또한 교량 보수 및 보강 후 교통망에 대한 피해정도를 정량화하기 위해 확률모델을 개발하였으며, 그 피해정도는 시간(Drivers Delay)으로 나타내었다. 본 연구가 캘리포니아를 대상으로 이루어져 국내적용 및 활용가능성에 대해서는 후속 연구가 뒤따라야 할 것으로 사료된다.

GFS-CFXB 내진보강법을 이용한 지진피해를 받은 R/C 건물의 내진성능 평가 및 내진보강 효과 (Seismic Strengthening and Performance Evaluation of Damaged R/C Buildings Strengthened with Glass Fiber Sheet and Carbon Fiber X-Brace System)

  • 이강석
    • 콘크리트학회논문집
    • /
    • 제25권6호
    • /
    • pp.667-674
    • /
    • 2013
  • 기존 강재 브레이싱 내진보강법은 정착부의 안정성 문제와 브레이싱의 국부좌굴이 발생할 문제가 있으며, 이를 방지하기 위한 추가보강으로 인해 불필요한 자중증가 등으로 경제적인 내진보강성능 확보에 어려움이 있다. 이 연구에서는 지진피해를 받은 건물에 지진피해로 인한 기존 기둥의 연성확보를 위해서 유리섬유시트(glass fiber sheet)로 래핑을 함과 동시에 기존 철골 X-브레이싱 내진보강법에 비교해서 경량의 고강도 재료로 보강 후 추가적인 중량증가가 거의 없으며, 브레이싱 압축 좌굴거동에 자유로운 탄소섬유 앵커 X-브레이싱공법(carbon fiber X-brace)을 조합한 경제적이며 효과적인 새로운 내진보강법(GFS-CFXB)을 제안하였다. 이 연구에서 제안한 GFS-CFXB공법의 유용성을 검증할 목적으로 지진피해를 받은 골조를 대상으로 반복가력에 의한 구조실험을 실시하여 내진성능 및 내진보강 효과를 검증하였다.

Seismic Risk Assessment of Existing Low-rise Reinforced Concrete Buildings in Korea

  • LEE, Kang Seok;Jung, Ju-Seong;Choi, Yun-Chul
    • Architectural research
    • /
    • 제20권1호
    • /
    • pp.17-25
    • /
    • 2018
  • Countermeasures against earthquake disasters such as the seismic capacity evaluation and/or retrofit schemes of buildings, especially existing low-rise reinforced concrete buildings, have not been fully performed since Korea had not experienced many destructive earthquakes in the past. However, due to more than 1200 earthquakes with low or moderate intensity in the off-coastal and inland of Korea during the past 20 years, and due to the recent moderate earthquakes in Korea, such as the 2016 Gyeongju Earthquake with M=5.8 and the 2017 Pohang Earthquake with M=5.4, the importance of the future earthquake preparedness measures is highly recognized in Korea. The main objective of this study is to provide the basic information regarding seismic capacities of existing low-rise reinforced concrete buildings in Korea. In this paper, seismic capacities of 14 existing low-rise reinforced concrete public buildings in Korea are evaluated based on the Japanese Standard for Evaluation of Seismic Capacity of Existing Reinforced Concrete Buildings. Seismic capacities between existing buildings in Korea and those in Japan is compared, and the relationship of seismic vulnerability of Korean buildings and Japanese buildings damaged due to severe earthquakes are also discussed. Results indicated that Korean existing low-rise reinforced concrete buildings have a narrow distribution of seismic capacities and they are relatively lower than Japanese buildings, and are also expected to have severe damage under the earthquake intensity level experienced in Japan. It should be noted from the research results that the high ductility in Korean existing low-rise buildings obtained from the Japanese Standard may be overestimated, because most buildings investigated herein have the hoop spacing wider than 30 cm. In the future, the modification of strength and ductility indices in the Japanese Standard to propose the seismic capacity evaluation method of Korean buildings is most needed.