• Title/Summary/Keyword: Seismic retrofit method

Search Result 148, Processing Time 0.024 seconds

The Pseudo-Dynamic Test for the Seismic Retrofit System Utilizing Existing Bridge Bearings (교량의 기존 받침을 활용하는 내진보강시스템의 유사동적 실험)

  • Kwahk, Im-Jong;Cho, Chang-Beck;Kim, Young-Jin;Kwark, Jong-Won
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.11 no.1 s.53
    • /
    • pp.21-27
    • /
    • 2007
  • In this study, an approach that installs seismic isolation bearings was proposed for the seismic retrofit of the existing bridges. The method that replaces all existing bearings with seismic isolators was proposed already. However, in this study, we recommend to utilize the existing bearings for the benefit of safety and cost. According to our proposal, the seismic isolators do not support vertical loads but they Just function as the period shifter and the horizontal damper. To verify this approach experimentally, the real scale bearings and lead rubber bearings far the real highway bridges were designed and fabricated. And the responses of this isolated bridges to the assumed earthquakes were determined by the pseudo dynamic test scheme. The test results were also compared to the responses computed by the well known structural analysis software to check the reliability of the test. From the test results, we found that the retrofitted bridges using the proposed method showed stable performances under earthquakes.

Seismic Performance of Dual Damper System Using High Damping Rubber and Steel (고감쇠 고무와 강재를 사용한 이중감쇠 제진시스템의 내진성능)

  • Kim, Jung-Uk;Kim, Dong-Keon
    • Journal of the Regional Association of Architectural Institute of Korea
    • /
    • v.21 no.1
    • /
    • pp.185-192
    • /
    • 2019
  • Recently, the frequency and magnitude of earthquakes are increasing worldwide. In Korea, the Gyeongju earthquake (2016) and the Pohang earthquake (2017) caused structural damage to many buildings. Since Korea's seismic design standards were revised to three or more stories in 2005, five-story buildings built before the revision are not designed to be earthquake-resistant. In this situation, if strong earthquake occurs in Korea, there will be great damage. To prevent this, seismic retrofit of buildings should be necessary. The seismic retrofit of classical method is mainly used to reduce the displacement generated in the structure by strengthening stiffness and strength. However, since this method increases the base shear force of the structure, it is difficult to apply it to buildings which have weak foundation. Therefore, in this study, we propose the damper system that reduces the response displacement of buildings and suppresses the increase of base shear force by using high damping rubber and steel. And the seismic performance of the damper system is verified through the experiment and the seismic analysis of the structure.

Seismic Retrofit of the Public Facilities Using the Wrapping Composite Plate (래핑 복합플레이트를 이용한 공공시설의 내진보강)

  • Park, Choon-Wook
    • Journal of Korean Association for Spatial Structures
    • /
    • v.23 no.3
    • /
    • pp.45-55
    • /
    • 2023
  • The purpose of this study has a purpose to evaluate shear ability, ductility and energy dissertation of specimens that is to be applied to jacket using wrapping method. The experiments was conducted as a condition that simultaneously applied axial load and transverse force. The results of experiments represent story-displacement ratio, the stiffness, energy dissertation, plastic rotation which mean seismic resistance ablity on structure. And It represents the form of crack ditribution and failure in extreme stages. Based on the results of this experiment, Design examples are given to show the performance evaluation for the column reinforcing of old school buildings using nonlinear analysis is going to be conducted. Therefore, it is possible to apply the seismic retrofit method to public facilities.

Retrofit of a hospital through strength reduction and enhanced damping

  • Viti, Stefania;Cimellaro, Gian Paolo;Reinhorn, Andrei M.
    • Smart Structures and Systems
    • /
    • v.2 no.4
    • /
    • pp.339-355
    • /
    • 2006
  • A procedure to retrofit existing essential facilities subjected to seismic excitation is proposed. The main features of this procedure are to reduce maximum acceleration and associated forces in buildings subjected to seismic excitation by reducing their strength (weakening). The weakening retrofit, which is an opposite strategy to strengthening, is particularly suitable for buildings having overstressed components and foundation supports or having weak brittle components. However, by weakening the structure large deformations are expected. Supplementaldamping devices however can control the deformations within desirable limits. The structure retrofitted with this strategy will have, therefore, a reduction in the acceleration response and a reduction in the deformations, depending on the amount of additional damping introduced in the structure. An illustration of the above strategy is presented here through an evaluation of the inelastic response of the structure through a nonlinear dynamic analysis. The results are compared with different retrofit techniques. A parametric analysis has also been carried out to evaluate the effectiveness of the retrofitting method using different combination of the performance thresholds in accelerations and displacements through fragility analysis.

Structural Performance of Connection element composed of High Performance Fiber Reinforced Cementitious composites and Steel Bars in Brace (브레이스에서 고인성시멘트 복합체와 강봉으로 구성된 접합요소의 구조성능)

  • Lee Young Oh;Yang Il Seung;Han Byung Chan;Park Wan Shin;Yun Hyun Do;Moon Youn Joon
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2005.05a
    • /
    • pp.231-234
    • /
    • 2005
  • Steel braced frames retrofit method has been broadly used due to their effectiveness in both light weight and construction periods. However, steel braced frames retrofit method has difficulties in application on the inner frames of buildings to be retrofitted consequently, there have been demands for the braced frames retrofit method that can be broadly and easily applicable to both inner and outer frames of the buildings. The objective of this study is to develop and evaluate the seismic retrofit method applicable to the inner frame also by dividing the reinforcing frames into three unit. From the cyclic test of specimens, the test results dearly showed that steel brace using HPFRCCs and steel bars ensure the better cyclic compressive performance than the normal braced members.

  • PDF

Pseudo Dynamic Test of the Seismically Isolated RC Piers (지진격리설계된 RC교각의 유사동적 실험)

  • Kim Young-Jin;Kwahk Im-Jong;Cho Chang-Beck;Kwark Jong-Won
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2004.11a
    • /
    • pp.25-28
    • /
    • 2004
  • Many highway bridges in Korea need seismic retrofit because only one decade has passed since the seismic design criteria was introduced. In this experimental study, the effectiveness of base isolation bearings was discussed for the seismic retrofit of the highway bridges. Four real scale RC pier specimens were constructed for the test. These RC piers didn't have seismic details. Except for one RC pier for the pilot test, three types of bearings such as Pot bearing, Rubber bearing (RB), Lead-rubber bearing (LRB) were applied to the other RC piers respectively. The RC pier with Pot bearing means current state of the prototype bridge that is not retrofitted seismically. And two RC piers with RB or LRB mean assumed states of the prototype bridge that are retrofitted seismically. To simulate dynamic behavior of these RC piers under earthquake loads, Pseudo-dynamic test method was used.

  • PDF

Seismic Performance Improved Design of Reinforced Concrete Columns Strengthened by Steel Jackets Using Displacement-based Design (스틸재킷 보강 철근콘크리트 기둥의 변위기반 내진 성능 개선 설계 방법)

  • Jung, In-Kju;Park, Moon-Ho;Cho, Chang-Geun
    • Journal of the Korea Concrete Institute
    • /
    • v.22 no.1
    • /
    • pp.11-18
    • /
    • 2010
  • In this study, a procedure of performance-based design for the seismic retrofit of reinforced concrete columns strengthened by steel jackets has been presented. In order to predict the target displacement of retrofitted columns, a nonlinear analysis of reinforced concrete columns retrofitted with steel jackets has been developed based on a segmental model with the fiber cross-sectional approach. The seismic displacement level of retrofitted columns is estimated both by the direct displacement-based design method and by the displacement coefficient method. In examples of seismic retrofitted columns, the current seismic retrofit procedure gives good results in improvements of displacement levels and displacement ductilities of retrofitted columns.

Experimental Study on the Development of a Seismic Reinforcement Method for Reinforced Concrete Columns using High-tensile Alloy Materials (고인장 합금재를 활용한 철근콘크리트 기둥의 내진보강공법 개발에 관한 실험적 연구)

  • Do-Yeon Kim;Il-Young Jang
    • Journal of the Society of Disaster Information
    • /
    • v.20 no.2
    • /
    • pp.411-418
    • /
    • 2024
  • Purpose: This study aims to develop brand new bolt fastening type of seismic retrofit using high tensile alloy materials for existing reinforced concrete columns. Method: A T-type cross-sectional seismic retrofit made of SUS304 and SS275, and the high-tensile bolt of SCM435 was analyzed for the effect of material properties on seismic performance through bending test. Result: The experiment using SUS304 shows a 7% higher maximum strength and 22% higher yield strength and shows a higher compressive stress of 360MPa. In addition, the change in the neutral axis is also smaller. Conclusion: Seismic retrofit using SUS304 is considered to be better in terms of yield strength, tensile strength, neutral axis change, and ductility, and it is considered necessary to experiment with RC column real experiments in future studies.

Development of Fragility Curves of Concrete Bridges (콘크리트 교량의 손상도 곡선 개발)

  • 김상훈;김두희;서형렬;김종인
    • Proceedings of the Earthquake Engineering Society of Korea Conference
    • /
    • 2003.09a
    • /
    • pp.319-325
    • /
    • 2003
  • The fragility curves of seismic retrofitted bridges by steel jacketing of bridge columns and restrainers at expansion joints after the 1994 Northridge earthquake are developed. Fragility curves are represented by lognormal distribution functions with two parameters(fragility parameters consisting of median and log-standard deviation) and developed as a function of peak ground acceleration (PGA). Two parameters in the lognormal distribution are estimated by the maximum likelihood method. The sixty ground acceleration time histories for Los Angeles area developed for FEMA SAC project are used for the dynamic analysis of the bridges and a computer code is developed to calculate hysterestic parameters of bridge columns before and after steel jacketing. The effect of retrofit is expressed in terms of the increase of the median value of the fragility curve for the retrofitted bridge from that of the bridge before retrofit. The comparison of fragility curves of the bridges before and after column retrofit demonstrates that the improvement of the bridges with steel jacketing on the seismic performance is excellent for the damage states defined in this study. The comparison of fragility curves of the bridges before and after restrainers at expansion joints also shows the improvement in the seismic performance of restrained bridges for the severe damage states.

  • PDF