• Title/Summary/Keyword: Seismic retrofit method

Search Result 148, Processing Time 0.026 seconds

Limited-Ductile Seismic Design and Performance Assessment Method of RC Bridge Piers Based on Displacement Ductility (변위연성도 기반 철근콘크리트 교각의 한정연성 내진 설계법과 성능평가 방법)

  • Park, Chang-Kyu;Chung, Young-Soo;Lee, Dae-Hyoung
    • Journal of the Korea Concrete Institute
    • /
    • v.19 no.1
    • /
    • pp.19-26
    • /
    • 2007
  • Until recently Korea is considered to be immune from the earthquake hazard because it is located for away from the active fault. However, we have noticed that recent strong earthquakes inflicted enormous losses on human lives and nation's economy all over the world. Hence, there has been raised the importance of the earthquake resistant design for various infrastructures. In this research, new methodologies for the seismic design and performance assessment of reinforced concrete(RC) bridge pier were proposed from experimental results of 82 circular RC bridge piers and 54 rectangular RC bridge piers tested in domestic and aboard. New seismic design method was based on the concept of the limited ductile design, which could be practically used for low or moderate seismic regions like Korea. Further study for the seismic safety of RC bridge piers was carried out to enhance the seismic performance of aged RC bridge piers, which were designed and constructed before implementing the 1992 seismic design provision in Korea. New formula for the seismic performance assessment of RC bridge piers was proposed and practically used for the decision on the need of repair and retrofit of many aged RC bridge piers.

Seismic Evaluation of Shear Wall System by Nonlinear Static Analysis Procedures (비선형 정적 해석을 통한 벽식구조물의 내진성능 평가)

  • 안성기;송정원;송진규;이수곤
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2000.10a
    • /
    • pp.63-68
    • /
    • 2000
  • Concrete is popular as a building material, however it is inherently brittle and performs poorly during earthquakes if nor reinforced properly. Traditional retrofit design techniques assume that buildings respond elastically to earthquakes. This assumption simplifies the analysis procedure but can lead to an erroneous conclusion. The complete nonlinear time history analysis is considered overly complex and impractical for general use. Simplified nonlinear analysis methods, referred to as nonlinear static analysis procedures, include the capacity spectrum method(CSM) developed in detail at ATC-40 and the displacement coefficient method(DCM) utilized at FEMA-273. In this study wall APT system. The results were compared and analyzed. The program used was neaMAX-3D to express nonlinear material.

  • PDF

Evaluation of Seismic Capacity and Estimation of Earthquake Damage for Existing Unreinforced Masonry Building in Korea (국내 조적조 건물의 내진성능평가 및 지진피해율 상정)

  • Kang, Dae-Eon;Yi, Waon-Ho
    • Journal of the Korea Concrete Institute
    • /
    • v.18 no.4 s.94
    • /
    • pp.535-542
    • /
    • 2006
  • In Seoul, more than 80 percent of residential buildings are constructed with unreinforced masonry(URM) buildings in early 1970 to 1990. In general, URM buildings have the advantages of reducing the construction time and easy to construction. However, URM buildings do not have enough strength against the lateral force. Moreover, low rise buildings have not adopted seismic designs, and for that reason a critical damage is expected with an earthquake. And also, the necessity of the seismic performance evaluation of existing building structures is raised through the Taiwan earthquake in 1999. The purpose of this study is to provide basic information for unreinforced masonry building in Korea by application of the proposed seismic evaluation method. In this study, seismic capacities of 50 existing unreinforced masonry buildings are evaluated based on the proposed method. Also, relationships of seismic capacities between Korean earthquake damage ratios of korean unreinforced masonry buildings are estimated. Results of this study were as follows; 1)Seismic retrofit was needed $8{\sim}48%$ in Korean unreinforced masonry buildings. 2)Korean unreinforced masonry buildings were expected to have severe damage under the earthquake intensity level experienced in Japan.

Seismic Performance and Retrofit of Reinforced Concrete Two-Column Piers Subjected to Bi-directional Cyclic Loadings (이축반복하중을 받는 2주형 철근콘크리트 교각의 내진성능과 보강)

  • Chung, Young-Soo;Park, Chang-Kyu;Lee, Ho-Yul
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.10 no.3 s.49
    • /
    • pp.47-55
    • /
    • 2006
  • Seismic performance and retrofit of reinforced concrete (RC) two-column piers widely used at roadway bridges in Korea was experimentally evaluated. Ten two-column piers that were 400 mm in diameter and 2,000 mm in height were constructed. These piers were subjected to hi-directional cyclic loadings under a constant axial load of $0.1f_{ck}A_g$. Test parameters were the confinement steel ratio, loading pattern, lap splice of longitudinal reinforcing bars, and retrofitting method. Specimens with lap-spliced longitudinal bars were retrofitted with steel jacket, pre-stressing steel wire, and steel band. Test result showed that while the specimens subjected to bi-directional lateral cyclic loadings which consisted of two main amplitudes in the transverse axis and two sub amplitudes in longitudinal axis, referred to as a T-series cyclic loadings, exhibited plastic hinges both at the top and bottom parts of the column, the specimens subjected to bi-directional lateral cyclic loadings in an opposite way, referred to as a L-series cyclic loadings, exhibited a plastic hinge only at the bottom of the column. The displacement ductility of the specimen under the T-series loadings was bigger than that of the specimen under the L-series loadings. Specimen retrofitted with pre-stressing steel wires exhibited poor ductility due to the upward shift of the plastic hinge region because of over-reinforcement, but specimens retrofitted with steel jacket and steel band showed the required displacement ductility. Steel band can be an effective retrofitting scheme to improve the seimsic performance of RC bridge piers, considering its practical construction.

Optimal design of seismic reinforcement for structures with asymmetric rigidity plans using genetic algorithm (유전자 알고리즘을 이용한 비대칭 강성 구조물의 내진보강 최적설계)

  • Lee, Joon-Ho;Kim, Yu-Seong;Sung, Eun-Hee
    • Journal of Korean Association for Spatial Structures
    • /
    • v.24 no.2
    • /
    • pp.65-73
    • /
    • 2024
  • In this study, we propose an optimal design method by applying the Prefabricated Buckling Restrained Brace (PF-BRB) to structures with asymmetrically rigidity plan. As a result of the PF-BRB optimal design of a structure with an asymmetrically rigidity plan, it can be seen that the reduction effect of dynamic response is greater in the case of arrangement considering the asymmetric distribution of stiffness (Asym) than in the case of arrangement in the form of a symmetric distribution (Sym), especially It was confirmed that at an eccentricity rate of 20%, the total amount of reinforced PF-BRBs was also small. As a result of analyzing the dynamic response characteristics according to the change in eccentricity of the asymmetrically rigidity plan, the distribution of the reinforced PF-BRB showed that the larger the eccentricity, the greater the amount of damper distribution around the eccentric position. Additionally, when comparing the analysis models with an eccentricity rate of 20% and an eccentricity rate of 12%, the response reduction ratio of the 20% eccentricity rate was found to be large.

Analysis on the Flexural Behavior of Existing Reinforced Concrete Frame Structures Infilled with L-Type Precast Wall Panel (L형 프리캐스트 콘크리트 벽패널로 채운 기존 철근 콘크리트 골조 구조물의 휨 거동 분석)

  • Yu, Sung-Yong;Ju, Ho-Seong;Son, Guk-Won
    • Journal of the Korean Society for Advanced Composite Structures
    • /
    • v.6 no.2
    • /
    • pp.52-62
    • /
    • 2015
  • This study aims at developing a new seismic resistant method by using precast concrete wall panels for existing low-rise, reinforced concrete beam-column buildings such as school buildings. Three quasi-static hysteresis loading tests were performed on one unreinforced beam-column specimen and two reinforced specimens with U-type precast wall panels. Top shear connection of the PC panel was required to show the composite strength of RC column and PC wall panel. However, the strength of the connection did not influence directly on the ultimate loading capacities of the specimens in the positive loading because the loaded RC column push the side of PC wall panel and it moved horizontally before the shear connector receive the concentrated shear force in the positive loading process. Under the positive loading sequence(push loading), the reinforced concrete column and PC panel showed flexural strength which is larger than 97% of the composite section because of the rigid binding at the top of precast panel. Similar load-deformation relationship and ultimated horizontal load capacities were shown in the test of PR1-LA and PR1-LP specimens because they have same section dimension and detail at the flexural critical section. An average of 4.7 times increase in the positive maximum loading(average 967kN) and 2.7 times increase in the negative maximum loading(average 592.5kN) had resulted from the test of seismic resistant specimens with anchored and welded steel plate connections than that of unreinforced beam-column specimen. The maximum drift ratios were also shown between 1.0% and 1.4%.

A new steel jacketing method for RC columns and a modified constitutive model of jacketed concrete (RC 기둥 보강을 위한 새로운 강판 보강기법 및 수정 연속체 모델)

  • Tae, Ghi Ho;Choi, Eun Soo
    • Journal of Korean Society of Steel Construction
    • /
    • v.20 no.5
    • /
    • pp.675-681
    • /
    • 2008
  • This study introduced a new steel-jacketing method to retrofit RC columns. It also estimated the performance of steel-jacketed concrete cylinders. Twelve concrete cylinders were fabricated with varying steel jacket thicknesses of 1.0, 1.5, and 2.0 mm. Lateral confining pressure was applied with three clamps and the performance of plain concrete cylinders was compared with that of steel-jacketed cylinders. Steel jacket proved to be effective in increasing the strength of the cylinder. Finally, Li's constitutive model was compared with that of the experimentalresults. However, Li's model showed incongruity in Region II, which indicates the region after the yield of steel jackets. Therefore, the modified value of n was used for the region and the model showed a good agreement.

On the use of the Lagrange Multiplier Technique for the unilateral local buckling of point-restrained plates, with application to side-plated concrete beams in structural retrofit

  • Hedayati, P.;Azhari, M.;Shahidi, A.R.;Bradford, M.A.
    • Structural Engineering and Mechanics
    • /
    • v.26 no.6
    • /
    • pp.673-685
    • /
    • 2007
  • Reinforced concrete beams can be strengthened in a structural retrofit process by attaching steel plates to their sides by bolting. Whilst bolting produces a confident degree of shear connection under conditions of either static or seismic overload, the plates are susceptible to local buckling. The aim of this paper is to investigate the local buckling of unilaterally-restrained plates with point supports in a generic fashion, but with particular emphasis on the provision of the restraints by bolts, and on the geometric configuration of these bolts on the buckling loads. A numerical procedure, which is based on the Rayleigh-Ritz method in conjunction with the technique of Lagrange multipliers, is developed to study the unilateral local buckling of rectangular plates bolted to the concrete with various arrangements of the pattern of bolting. A sufficient number of separable polynomials are used to define the flexural buckling displacements, while the restraint condition is modelled as a tensionless foundation using a penalty function approach to this form of mathematical contact problem. The additional constraint provided by the bolts is also modelled using Lagrange multipliers, providing an efficacious method of numerical analysis. Local buckling coefficients are determined for a range of bolting configurations, and these are compared with those developed elsewhere with simplifying assumptions. The interaction of the actions in bolted plates during buckling is also considered.

Seismic Performance and Damage Prediction of Existing Fire-protection Pipe Systems Installed in RC Frame Structures (철근콘크리트 구조물 내 부착된 수계 관망시스템의 내진거동 및 손상예측)

  • Jung, Woo-Young;Ju, Bu-Seog
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.15 no.3
    • /
    • pp.37-43
    • /
    • 2011
  • Reliability of piping systems is essential to the safety of any important industrial facilities. During an earthquake, damage to the piping system can occur. It can also cause considerable economic losses and the loss of life following earthquakes. Traditionally, the study of the secondary system was less important than primary structure system, however it has recently been emerging as a key issue for the effective maintenance of the structural system and to help reduce nonstructural earthquake damage. The primary objectives of this study are to evaluate seismic design requirements and the seismic performance of gas and fire protection piping systems installed in reinforced concrete (RC) buildings. In order to characterize the seismic behavior of the existing piping system in an official building, 10 simulated earthquakes and 9 recorded real earthquakes were applied to ground level and the building system by the newmark average acceleration time history method. The results developed by this research can be used for the improvement of new seismic code/regulatory guidelines of secondary systems as well as the improvement of seismic retrofitting or the strengthening of the current piping system.

Retrofitting of steel pile-abutment connections of integral bridges using CFRP

  • Mirrezaei, Seyed Saeed;Barghian, Majid;Ghaffarzadeh, Hossein;Farzam, Masood
    • Structural Engineering and Mechanics
    • /
    • v.59 no.2
    • /
    • pp.209-226
    • /
    • 2016
  • Integral bridges are typically designed with flexible foundations that include one row of piles. The construction of integral bridges solves difficulties due to the maintenance of expansion joints and bearings during serviceability. It causes integral bridges to become more economic comparing with conventional bridges. Research has been focused not only to enhance the seismic performance of newly designed bridges, but also to develop retrofit strategies for existing ones. The local performance of the pile to abutment connection will have a major effect on the performance of the structure and the embedment length of pile inside the abutment has a key role to provide shear and flexural resistance of pile-abutment connections. In this paper, a simple method was developed to estimate the initial value of embedment length of the pile for retrofitting of specimens. Four specimens of pile-abutment connections were constructed with different embedment lengths of pile inside the abutment to evaluate their performances. The results of the experimentation in conjunction with numerical and analytical studies showed that retrofitting pile-abutment connections with CFRP wraps increased the strength of the connection up to 86%. Also, designed connections with the proposed method had sufficient resistance against lateral load.