• 제목/요약/키워드: Seismic response control

검색결과 367건 처리시간 0.027초

경사진 고층건물의 진화최적화 알고리즘에 기반한 지진응답 제어 (Seismic Response Control of Tilted Tall Building based on Evolutionary Optimization Algorithm)

  • 김현수;강주원
    • 한국공간구조학회논문집
    • /
    • 제21권3호
    • /
    • pp.43-50
    • /
    • 2021
  • A tilted tall building is actively constructed as landmark structures around world to date. Because lateral displacement responses of a tilted tall building occurs even by its self-weight, reduction of seismic responses is very important to ensure structural safety. In this study, a smart tuned mass damper (STMD) was applied to the example tilted tall building and its seismic response control performance was investigated. The STMD was composed of magnetorheological (MR) damper and it was installed on the top floor of the example building. Control performance of the STMD mainly depends on the control algorithn. Fuzzy logic controller (FLC) was selected as a control algorithm for the STMD. Because composing fuzzy rules and tuning membership functions of FLC are difficult task, evolutionary optimization algorithm (EOA) was used to develop the FLC. After numerical simulations, it has been seen that the STMD controlled by the EOA-optimized FLC can effectively reduce seismic responses fo the tilted tall building.

발전소 주 제어실 제어패널의 내진해석 (Seismic Analysis on a Control Panel of (Nuclear) Power Plant)

  • 이흥식;김명구;조종두
    • 한국소음진동공학회논문집
    • /
    • 제15권6호
    • /
    • pp.652-659
    • /
    • 2005
  • In this paper, seismic qualification analysis for the Plant control Panel is carried out to confirm the structural integrity under the seismic conditions represented by required response spectra(RRS). The finite element method(FEM) is used for the analysis and a mode combination method is adopted to obtain a more reliable spectrum analysis results. In addition, the experimental analysis is performed to compare the reliability of the analytical results. The analysis results shows that the plant control panel system is designed to have the dynamic rigidity with no resonance frequency below 33 Hz. The analytically calculated maximum stress of the plant control panel system is $36\%$ of the field strength of material, thus it can be shown that the system has a stable structure for the seismic load.

지도학습과 강화학습을 이용한 준능동 중간층면진시스템의 최적설계 (Optimal Design of Semi-Active Mid-Story Isolation System using Supervised Learning and Reinforcement Learning)

  • 강주원;김현수
    • 한국공간구조학회논문집
    • /
    • 제21권4호
    • /
    • pp.73-80
    • /
    • 2021
  • A mid-story isolation system was proposed for seismic response reduction of high-rise buildings and presented good control performance. Control performance of a mid-story isolation system was enhanced by introducing semi-active control devices into isolation systems. Seismic response reduction capacity of a semi-active mid-story isolation system mainly depends on effect of control algorithm. AI(Artificial Intelligence)-based control algorithm was developed for control of a semi-active mid-story isolation system in this study. For this research, an practical structure of Shiodome Sumitomo building in Japan which has a mid-story isolation system was used as an example structure. An MR (magnetorheological) damper was used to make a semi-active mid-story isolation system in example model. In numerical simulation, seismic response prediction model was generated by one of supervised learning model, i.e. an RNN (Recurrent Neural Network). Deep Q-network (DQN) out of reinforcement learning algorithms was employed to develop control algorithm The numerical simulation results presented that the DQN algorithm can effectively control a semi-active mid-story isolation system resulting in successful reduction of seismic responses.

스마트 TMD의 지진응답 제어성능 실험적 검토 (Experimental Evaluation of Seismic Response Control Performance of Smart TMD)

  • 강주원;김현수
    • 한국공간구조학회논문집
    • /
    • 제22권3호
    • /
    • pp.49-56
    • /
    • 2022
  • Tuned mass damper (TMD) is widely used to reduce dynamic responses of structures subjected to earthquake loads. A smart tuned mass damper (STMD) was proposed to increase control performance of a traditional passive TMD. A lot of research was conducted to investigate the control performance of a STMD based on analytical method. Experimental study of evaluation of control performance of a STMD was not widely conducted to date. Therefore, seismic response reduction capacity of a STMD was experimentally investigated in this study. For this purpose, a STMD was manufactured using an MR (magnetorheological) damper. A simple structure presenting dynamic characteristics of spacial roof structure was made as a test structure. A STMD was made to control vertical responses of the test structure. Two artificial ground motions and a resonance harmonic load were selected as experimental seismic excitations. Shaking table test was conducted to evaluate control performance of a STMD. Control algorithms are one of main factors affect control performance of a STMD. In this study, a groundhook algorithm that is a traditional semi-active control algorithm was selected. And fuzzy logic controller (FLC) was used to control a STMD. The FLC was optimized by multi-objective genetic algorithm. The experimental results presented that the TMD can effectively reduce seismic responses of the example structures subjected to various excitations. It was also experimentally shown that the STMD can more effectively reduce seismic responses of the example structures conpared to the passive TMD.

연결 제어 시스템 기반의 멀티해저드 적응형 스마트 제어 기술 성능 평가 (Performance Evaluation of Multi-Hazard Adaptive Smart Control Technique Based on Connective Control System)

  • 김현수
    • 한국공간구조학회논문집
    • /
    • 제18권4호
    • /
    • pp.97-104
    • /
    • 2018
  • A connected control method for the adjacent buildings has been studied to reduce dynamic responses. In these studies, seismic loads were generally used as an excitation. Recently, multi-hazards loads including earthquake and strong wind loads are employed to investigate control performance of various control systems. Accordingly, strong wind load as well as earthquake load was adopted to evaluate control performance of adaptive smart coupling control system against multi-hazard. To this end, an artificial seismic load in the region of strong seismicity and an artificial wind load in the region of strong winds were generated for control performance evaluation of the coupling control system. Artificial seismic and wind excitations were made by SIMQKE and Kaimal spectrum based on ASCE 7-10. As example buildings, two 20-story and 12-story adjacent buildings were used. An MR (magnetorheological) damper was used as an adaptive smart control device to connect adjacent two buildings. In oder to present nonlinear dynamic behavior of MR damper, Bouc-Wen model was employed in this study. After parametric studies on MR damper capacity, optimal command voltages for MR damper on each seismic and wind loads were investigated. Based on numerical analyses, it was shown that the adaptive smart coupling control system proposed in this study can provide very good control performance for Multi-hazards.

A dominant vibration mode-based scalar ground motion intensity measure for single-layer reticulated domes

  • Zhong, Jie;Zhi, Xudong;Fan, Feng
    • Earthquakes and Structures
    • /
    • 제11권2호
    • /
    • pp.245-264
    • /
    • 2016
  • A suitable ground motion intensity measure (IM) plays a crucial role in the seismic performance assessment of a structure. In this paper, we introduce a scalar IM for use in evaluating the seismic response of single-layer reticulated domes. This IM is defined as the weighted geometric mean of the spectral acceleration ordinates at the periods of the dominant vibration modes of the structure considered, and the modal strain energy ratio of each dominant vibration mode is the corresponding weight. Its applicability and superiority to 11 other existing IMs are firstly investigated in terms of correlation with the nonlinear seismic response, efficiency and sufficiency using the results of incremental dynamic analyses which are performed for a typical single-layer reticulated dome. The hazard computability of this newly proposed IM is also briefly discussed and illustrated. A conclusion is drawn that this dominant vibration mode-based scalar IM has the characteristics of strong correlation, high efficiency, good sufficiency as well as hazard computability, and thereby is appropriate for use in the prediction of seismic response of single-layer reticulated domes.

내진에 대한 Plant Control Panel 의 구조적 건전성 평가 (Evaluation of Structural Integrity of A Plant Control Panel under Seismic)

  • 이흥식;김명구;조종두
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2004년도 추계학술대회논문집
    • /
    • pp.958-961
    • /
    • 2004
  • This paper presents a plant control panel model for the analysis. Seismic qualification analysis for the plant control panel is carried out to confirm the structural integrity under the seismic conditions represented by required response spectra(RRS). For the analysis finite element method(FEM) is used. And mode combinations are adopted to obtain the reliability of the spectrum analysis. The analysis results shows that the plant control panel system is designed as a dynamically rigid assembly, without any resonance frequency below 33Hz. The calculated stress of the plant control panel system is much less than yield stress of used steel.

  • PDF

준능동 MR감쇠기가 설치된 실물크기 구조물의 분산제어 알고리즘 성능평가 (Performance Evaluation of Decentralized Control Algorithm of a Full-scale 5-story Structure Installed with Semi-active MR Damper Excited by Seismic Load)

  • 윤경조;박은천;이헌재;문석준;민경원;정형조;이상현
    • 한국소음진동공학회논문집
    • /
    • 제18권2호
    • /
    • pp.255-262
    • /
    • 2008
  • In this study, seismic response control performance of decentralized response-dependent MR damper which generates the control force using only the response of damper-installed floor, was experimentally investigated through the tests of a full-scale structure installed with large MR dampers. The performance of the decentralized control algorithm was compared to those of the centralized ones such as Lyapunov, modulated homogeneous friction, and clipped-optimal control. Hybrid mass damper were controlled to induce seismic response of the full-scale structure under El Centro earthquake. Experimental results indicated that the proposed decentralized MR damper provided superior or equivalent performance to centralized one in spite of using damper-installed floor response for calculating input voltage to MR damper.

돔 구조물의 지진응답 제어를 위한 TMD의 적용 (Application of TMD for Seismic Response Control of Dome Structure)

  • 김기철;강주원
    • 한국공간구조학회논문집
    • /
    • 제12권1호
    • /
    • pp.99-108
    • /
    • 2012
  • 본 연구에서는 지진하중을 받는 대공간 구조물의 지진응답을 저감시키기 위하여 돔 구조물에 대한 동조질량제어장치(TMD)의 적용성을 검토하였다. 이를 위하여 돔 구조물의 기본적인 동적특성을 가지고 있으며 가장 간단한 구조이기도 한 스타 돔 구조물에 수동형 TMD를 설치하여 지진응답 제어성능을 평가하였다. 본 연구에서는 KBC2009에 따른 인공 지진하중을 수평방향과 연직방향으로 가하여 스타 돔 구조물에 대한 지진응답을 분석하였으며 이를 바탕으로 TMD의 설치에 따른 스타 돔 구조물의 지진응답 제어성능을 분석하였다. 해석결과 다음과 같은 결론을 얻을 수 있었다. 지진하중의 방향에 반응하는 스타 돔 구조물의 진동모드 분석을 통하여 수동 TMD를 설치하는 것이 지진응답 제어에 있어서 효과적인 것을 확인할 수 있었다.

평면 비정형 구조물에 적용된 중간층 면진 시스템의 지진 응답 제어 성능 분석 (Seismic Response Control of Mid-Story Isolation System for Planar Irregular Structures)

  • 박효선;김현수;강주원
    • 한국공간구조학회논문집
    • /
    • 제19권2호
    • /
    • pp.109-116
    • /
    • 2019
  • In this study, the seismic response is investigated by using a relatively low-rise building under torsion-prone conditions and three seismic loads with change of the location of the seismic isolation system. LRB (Lead Rubber Bearing) was used for the seismic isolator applied to the analytical model. Fixed model without seismic isolation system was set as a basic model and LB models using seismic isolation system were compared. The maximum story drift ratio and the maximum torsional angle were evaluated by using the position of the seismic layer as a variable. It was confirmed that the isolation device is effective for torsional control of planar irregular structures. Also, it was shown that the applicability of the mid-story seismic isolation system. Numerical analyses results presented that an isolator installed in the lower layer provided good control performance for the maximum story drift ratio and the maximum torsional angle simultaneously.