• 제목/요약/키워드: Seismic rehabilitation

검색결과 81건 처리시간 0.029초

에너지 소산 능력을 가진 인장가새 개발 (Development of Tension Bracing for Energy Dissipation Capacity)

  • 최형준;엄승현;김원기
    • 한국지진공학회:학술대회논문집
    • /
    • 한국지진공학회 2002년도 추계 학술발표회 논문집
    • /
    • pp.349-356
    • /
    • 2002
  • Anticipating potential strong earthquakes, bracing dampers for better seismic performance are being developed in Korea, while similar ones are already developed in other countries. But, there are lack of relevant research on Slender Brace Dampers rather than hysteretic dampers, whose concept is also inappropriate for rehabilitation existed slender braced frame. For the development of Slender Brace Damper in slender braced frame, this research investigates Slender Brace Damper possessing various shapes of hyteretic damper through performing experimental test under cyclic loadings. As a result at this paper, Energy dissipation of test specimens (H35B20PS, H35B20TS, H20B60PS) are superior.

  • PDF

Seismic Retrofit after 921 Earthquake

  • Tsai, C.S.
    • 한국지진공학회:학술대회논문집
    • /
    • 한국지진공학회 2000년도 춘계 학술발표회 논문집 Proceedings of EESK Conference-Spring
    • /
    • pp.18-20
    • /
    • 2000
  • At 1:47 a.m, local time on September 21, 1999, a strong earthquake measured 7.3 on the Richter scale struck central Taiwan evoking another two earthquakes a few seconds late to wake up unprepared people of this small island. It caused 2,465 people killed 11,305 injured about 10,000 buildings collapsed and around 41,000 severely damaged, The major concerns after the earthquake are how to have learned from this natural disaster and how to rebuild earthquake-proof buildings without rendering up safety within reasonable costs. Inevitable actions for redrafting the building codes have been taken to re-strengthen the existing and new structures. Structural analysis tools and computer programs adopted by most practicing engineers have been re-examined to take into account the effects of the vertical component of ground shakings on structural responses. Most private structures were repaired by traditional methods without considering upgrading seismic resistibility because of economical reasons. Buildings open to the public are under consideration possibly enforced by making regulations to be upgraded to satisfy revised building codes. In addition new rehabilitation technologies such as structural control have been moving much faster than before and have become accepted by the public due to frequent reports by media and specialists. Building codes related to base isolators and energy absorption systems are still under legislation and expected to be published soon. Most of the new structures under construction designed by the building codes promulgated before the earthquake have been reconsidered to comply with the new codes even though it is not compulsory. Efforts have been made by the government engineering and research communities and universities in an attempt to reduce structural damage for future earthquakes and to construct if possible Taiwan as an earthquake-proof island.

  • PDF

부착 및 래핑형 복합소재를 이용한 학교시설의 내진보강 (Seismic Retrofit of School Facilities Using Rapping and Attaching Composite Material)

  • 박춘욱;김동휘;권민호;최열
    • 콘크리트학회논문집
    • /
    • 제26권2호
    • /
    • pp.135-142
    • /
    • 2014
  • 이 논문에서는 한국인근에서 강한 지진이 발생된 후 조사한 국내의 학교건물의 경우 86%가 지진에 취약한 것으로 나타났으며 내진설계가 된 학교건축물은 14%에 불과한 것으로 파악되고 있다. 이에 국내에서는 교육부가 주도하는 학교건축물의 내진보강프로젝트가 수행되고 있으나, 일본 등의 다양한 시스템내진보강에 대해서는 기술과 공법 등이 도입되어 국내의 실정에 맞는지 검토 및 검증 절차 없이 적용되고 있으나 부재내진보강에 대해서는 시스템내진보강에 밀려 실무적용 및 연구가 미비한 실정이다. 그러므로 최근에 부착 및 래핑형 복합재료를 이용한 기둥전단보강방법에 관한 실험 및 이론적인 연구를 진행하였다. 이 연구에서는 기존의 연구실적을 바탕으로 기존학교건물의 비선형해석을 통한 내진성능평가를 하고 기둥내진보강방법을 제시하여 그 효과를 실험적으로 입증한 후 실제 학교구조물을 설계 예로 들어 내진보강설계에 적용하고자한다.

신개념 마이크로파일 개발 및 현장시험시공 (Development of New Micropiling Technique and Field Installation)

  • 최창호;구정민;이정훈;조삼덕;정재형
    • 한국지반공학회:학술대회논문집
    • /
    • 한국지반공학회 2009년도 춘계 학술발표회
    • /
    • pp.571-578
    • /
    • 2009
  • Recently, micropiling techniques are increasingly applied in foundation rehabilitation/underpinning and seismic retrofitting projects where working space provides the limited access for conventional piling methods. Micropiling techniques provide environmental-friendly methods for minimizing disturbance to adjacent structures, ground, and the environment. Its installation is possible in restrictive area and general ground conditions. The cardinal features that the installation procedures cause minimal vibration and noise and require very low ceiling height make the micropiling methods to be commonly used for underpin existing structures. In the design point of view, the current practice obligates the bearing capacity of micropile to be obtained from skin friction of only rock-socketing area, in which it implies the frictional resistance of upper soil layer is ignored in the design process. In this paper, a new micropiling method and its verification studies via field installation are presented. The new method provides a specific way to grout bore-hole to increase frictional resistance between surrounding soil and pile-structure and it allows to consider the skin friction of micropiles for upper soil layer during design process.

  • PDF

Prediction of curvature ductility factor for FRP strengthened RHSC beams using ANFIS and regression models

  • Komleh, H. Ebrahimpour;Maghsoudi, A.A.
    • Computers and Concrete
    • /
    • 제16권3호
    • /
    • pp.399-414
    • /
    • 2015
  • Nowadays, fiber reinforced polymer (FRP) composites are widely used for rehabilitation, repair and strengthening of reinforced concrete (RC) structures. Also, recent advances in concrete technology have led to the production of high strength concrete, HSC. Such concrete due to its very high compression strength is less ductile; so in seismic areas, ductility is an important factor in design of HSC members (especially FRP strengthened members) under flexure. In this study, the Adaptive Neuro-Fuzzy Inference System (ANFIS) and multiple regression analysis are used to predict the curvature ductility factor of FRP strengthened reinforced HSC (RHSC) beams. Also, the effects of concrete strength, steel reinforcement ratio and externally reinforcement (FRP) stiffness on the complete moment-curvature behavior and the curvature ductility factor of the FRP strengthened RHSC beams are evaluated using the analytical approach. Results indicate that the predictions of ANFIS and multiple regression models for the curvature ductility factor are accurate to within -0.22% and 1.87% error for practical applications respectively. Finally, the effects of height to wide ratio (h/b) of the cross section on the proposed models are investigated.

Computational and experimental analysis of beam to column joints reinforced with CFRP plates

  • Luo, Zhenyan;Sinaei, Hamid;Ibrahim, Zainah;Shariati, Mahdi;Jumaat, Zamin;Wakil, Karzan;Pham, Binh Thai;Mohamad, Edy Tonnizam;Khorami, Majid
    • Steel and Composite Structures
    • /
    • 제30권3호
    • /
    • pp.271-280
    • /
    • 2019
  • In this paper, numerical and experimental assessments have been conducted in order to investigate the capability of using CFRP for the seismic capacity improvement and relocation of plastic hinge in reinforced concrete connections. Two scaled down exterior reinforced concrete beam to column connections have been used. These two connections from a strengthened moment frame have been tested under uniformly distributed load before and after optimization. The results of experimental tests have been used to verify the accuracy of numerical modeling using computational ABAQUS software. Application of FRP plate on the web of the beam in connections to improve its capacity is of interest in this paper. Several parametric studies were carried out for CFRP reinforced samples, with different lengths and thicknesses in order to relocate the plastic hinge away from the face of the column.

Condition assessment of bridge pier using constrained minimum variance unbiased estimator

  • Tamuly, Pranjal;Chakraborty, Arunasis;Das, Sandip
    • Structural Monitoring and Maintenance
    • /
    • 제7권4호
    • /
    • pp.319-344
    • /
    • 2020
  • Inverse analysis of non-linear reinforced concrete bridge pier using recursive Gaussian filtering for in-situ condition assessment is the main theme of this work. For this purpose, minimum variance unbiased estimation using unscented sigma points is adopted here. The uniqueness of this inverse analysis lies in its approach for strain based updating of engineering demand parameters, where appropriate bound and constrained conditions are introduced to ensure numerical stability and convergence. In this analysis, seismic input is also identified, which is an added advantage for the structures having no dedicated sensors for earthquake measurement. First, the proposed strategy is tested with a simulated example whose hysteretic properties are obtained from the slow-cyclic test of a frame to investigate its efficiency and accuracy. Finally, the experimental test data of a full-scale bridge pier is used to study its in-situ condition in terms of Park & Ang damage index. Overall the study shows the ability of the augmented minimum variance unbiased estimation based recursive time-marching algorithm for non-linear system identification with the aim to estimate the engineering damage parameters that are the fundamental information necessary for any future decision making for retrofitting/rehabilitation.

연속지진에 대한 지진 취약 철근콘크리트 건축물의 FRP 재킷 보수 전략 연구 (Repair Scheme of FRP Column Jacketing System for Seismically-vulnerable RC Buildings under Successive Earthquakes)

  • 김수빈;김혜원;박재은;신지욱
    • 한국공간구조학회논문집
    • /
    • 제23권2호
    • /
    • pp.79-90
    • /
    • 2023
  • Existing reinforced concrete (RC) frame buildings have seismic vulnerabilities because of seismically deficient details. In particular, since cumulative damage caused by successive earthquakes causes serious damage, repair/retrofit rehabilitation studies for successive earthquakes are needed. This study investigates the repair effect of fiber-reinforced polymer jacketing system for the seismically-vulnerable building structures under successive earthquakes. The repair modeling method developed and validated from the previous study was implemented to the building models. Additionally, the main parameters of the FRP jacketing system were selected as the number of FRP layers associated with the confinement effects and the installation location. To define the repair effects of the FRP jacketing system with the main parameters, this study conducted nonlinear time-history analyses for the building structural models with the various repairing scenarios. Based on this investigation, the repair effects of the damaged building structures were significantly affected by the damage levels induced from the mainshocks regardless of the retrofit scenarios.

Retrofit strategy issues for structures under earthquake loading using sensitivity-optimization procedures

  • Manolis, G.D.;Panagiotopoulos, C.G.;Paraskevopoulos, E.A.;Karaoulanis, F.E.;Vadaloukas, G.N.;Papachristidis, A.G.
    • Earthquakes and Structures
    • /
    • 제1권1호
    • /
    • pp.109-127
    • /
    • 2010
  • This work aims at introducing structural sensitivity analysis capabilities into existing commercial finite element software codes for the purpose of mapping retrofit strategies for a broad group of structures including heritage-type buildings. More specifically, the first stage sensitivity analysis is implemented for the standard deterministic environment, followed by stochastic structural sensitivity analysis defined for the probabilistic environment in a subsequent, second phase. It is believed that this new generation of software that will be released by the industrial partner will address the needs of a rapidly developing specialty within the engineering design profession, namely commercial retrofit and rehabilitation activities. In congested urban areas, these activities are carried out in reference to a certain percentage of the contemporary building stock that can no longer be demolished to give room for new construction because of economical, historical or cultural reasons. Furthermore, such analysis tools are becoming essential in reference to a new generation of national codes that spell out in detail how retrofit strategies ought to be implemented. More specifically, our work focuses on identifying the minimum-cost intervention on a given structure undergoing retrofit. Finally, an additional factor that arises in earthquake-prone regions across the world is the random nature of seismic activity that further complicates the task of determining the dynamic overstress that is being induced in the building stock and the additional demands placed on the supporting structural system.

급속시공기술 개발을 위한 FRP로 보강된 프리캐스트 교각의 실험 연구 (An Experimental Study on Precast Bridge Piers Confined by FRP for Technical Development of Accelerated Construction)

  • 이승혜;이영호;황윤국;송재준
    • 한국콘크리트학회:학술대회논문집
    • /
    • 한국콘크리트학회 2008년도 춘계 학술발표회 제20권1호
    • /
    • pp.237-240
    • /
    • 2008
  • 현재 우리나라 고속도로의 일부 도로와 교량들은 이미 노후화가 진행 중이며, 또한 증가하는 교통량을 소화하기 위해 교량의 보수 및 보강, 신축, 확장이 필요한 구간이 많은 실정이다. 이러한 교량 공사는 공사가 진행되는 동안 야기되는 사회적 민원이나 그 밖의 손실, 교통통제에 따른 우회차량의 경제적 손실등과 밀접하며 점점 중요한 문제로 부각되고 있다. 이러한 영향으로 교량 공사의 현장작업 최소화를 위해 다양한 프리캐스트 부재와 공법 등이 개발되고 있으며 새로운 소재를 적용하기 위한 연구 또한 진행 중이다. 본 연구에서는 프리캐스트형(形) CFFT 개발을 위해 축소모형 실험을 수행하였고, 결과 비교를 위해 동일한 제원의 현장타설형(形) RC교각과 현장타설형(形) CFFT 교각의 축소모형 실험도 수행하였다. 각 실험체의 하중-변위 곡선을 얻어 내하력을 비교하였고, 변위연성도를 구하여 내진성능을 비교해 보았다.

  • PDF