• 제목/요약/키워드: Seismic rebar

검색결과 53건 처리시간 0.02초

Seismic behaviour of RC columns with welded rebars or mechanical splices of reinforcement

  • Kalogeropoulos, George I.;Tsonos, Alexander-Dimitrios G.;Konstantinidis, Dimitrios
    • Earthquakes and Structures
    • /
    • 제17권3호
    • /
    • pp.297-306
    • /
    • 2019
  • The extension of existing RC buildings is a challenging process, which requires efficient connection between existing and new materials to guarantee load transferring between the lap-spliced longitudinal columns' reinforcement. Therefore, the length of the columns' starter bars is a crucial factor, which decisively affects the seismic response of the new columns. In particular, when the length of the starter bars is short, then the length of the lap splices of reinforcement is inadequate to ensure load transfer between steel bars and concrete, with an indisputable detrimental impact on the seismic behaviour of the columns. Moreover, in most of the existing RC buildings the column starter bars are of particularly short length, while they have probably been bent, cut or corroded. In the present study, the effectiveness of both welded rebar and mechanical splices of reinforcement in ensuring load transferring between the starter bars and the longitudinal reinforcement of the new column was experimentally evaluated. Four cantilever column subassemblages were constructed and subjected to earthquake-type loading. Three of the specimens were used to examine different types of shielded metal arc welding (SMAW), while in the fourth subassemblage mechanical splices were tested. The hysteretic response of the columns was evaluated and compared to the behaviour of a fifth specimen with continuous reinforcement, tested by Kalogeropoulos and Tsonos (2019). Test results clearly demonstrated that the examined types of SMAW were equally satisfactory in ensuring the ductile seismic performance of the columns, while the mechanical splices found to be more susceptible to exhibit slipping of the bars.

Investigating the effect of bond slip on the seismic response of RC structures

  • Fallah, Mohammad Mehdi;Shooshtari, Ahmad;Ronagh, Hamid Reza
    • Structural Engineering and Mechanics
    • /
    • 제46권5호
    • /
    • pp.695-711
    • /
    • 2013
  • It is reasonable to assume that reinforced concrete (RC) structures enter the nonlinear range of response during a severe ground motion. Numerical analysis to predict the behaviour therefore must allow for the presence of nonlinear deformations if an accurate estimate of seismic response is aimed. Among the factors contributing to inelastic deformations, the influence of the degradation of the bond slip phenomenon is important. Any rebar slip generates an additional rotation at the end regions of structural members which are not accounted for in a conventional analysis. Although these deformations could affect the seismic response of RC structures considerably, they are often neglected due to the unavailability of suitable models. In this paper, the seismic response of two types of RC structures, designed according to the Iranian concrete code (ABA) and the Iranian seismic code (2800), are evaluated using nonlinear dynamic and static analyses. The investigation is performed using nonlinear dynamic and static pushover analysis considering the deformations due to anchorage slip. The nonlinear analysis results confirm that bond slip significantly influences the seismic behavior of RC structure leading to an increase of lateral deformations by up to 30% depending on the height of building. The outcomes also identify important parameters affecting the extent of this influence.

Seismic performance evaluation of a three-dimensional unsymmetrical reinforced concrete building

  • Lim, Hyun-Kyu;Kang, Jun Won;Lee, Young-Geun;Chi, Ho-Seok
    • Multiscale and Multiphysics Mechanics
    • /
    • 제1권2호
    • /
    • pp.143-156
    • /
    • 2016
  • Reinforced concrete (RC) structures require advanced analysis techniques for better estimation of their seismic responses, especially in the case of exhibiting complex three-dimensional coupling of torsional and flexural behaviors. This study focuses on validating a numerical approach for evaluating the seismic response of a three-dimensional unsymmetrical RC structure through the participation in the SMART 2013 international benchmark program. The benchmark program provides material properties, detailed drawings of the RC structure, and input ground motions for the seismic response evaluation. In this study, nonlinear constitutive models of concrete and rebar were formed and local tests were conducted to verify the constitutive models in finite element analysis. Elastic calibration of the finite element model of the SMART 2013 RC structure was performed by comparing numerical and experimental results in modal and linear time history analyses. Using the calibrated model, nonlinear earthquake analysis and seismic fragility analysis were performed to estimate the behavior and vulnerability of the RC structure with various ground motions.

감쇠시스템을 적용한 라멘조 아파트의 내진성능평가 (Seismic Performance of the Framed Apartment Building Structure with Damping System)

  • 천영수;이범식;박지영
    • 토지주택연구
    • /
    • 제8권3호
    • /
    • pp.181-187
    • /
    • 2017
  • To proactively respond to internal and external changes such as the recent demographic change and rising demand for diversified housing types, this study investigated the framed-structure free plan public house model proposed by the LH to look at the seismic performance of framed-structure apartment according to damper system use through non-linear analysis. The effectiveness thereof was also examined in terms of performance and economy. As a result, the proposed damper system application method to framed-structure free plan public house model was found to meet the performance requirements of the present earthquake-resistant design (KBC2016) and effective to apply to designs. The max response displacement and max response acceleration were compared based on the nonlinear analysis. As a result, the building with damper system showed better earthquake resistance performance than earthquake-resistant structure thanks to the damper system, although the base shear of earthquake-resistant system was reduced by 20% in design. The damper system is expected to help reduce building damage while ensuring excellent earthquake resistance performance. In addition, the framework quantities of earthquake-resistant structure and structure with damping system were compared. As a result, columns were found to reduce concrete amount by about 3.9% and rebar, by about 7.3%. Walls showed about 12.6% reduction in concrete and about 10.7% in rebar. In terms of cost, framework construction cost including formwork and foundation expenses was expected to drop by about 5~6%.

영상분석기법을 이용한 철근의 변형률 및 넥킹구간 평가 (Evaluation on Strain and Necking Region of the Rebar by Using Image Processing Method)

  • 정진환;이종한;우태련;정치영
    • 콘크리트학회논문집
    • /
    • 제29권1호
    • /
    • pp.33-42
    • /
    • 2017
  • 본 연구에서는 시험기준에 따른 차이를 해소하기 위한 기초자료를 제시하기 위하여, 철근의 1축 인장 시험을 수행하고, 이에 대한 변형률 분포 및 넥킹구간에 대한 평가를 수행하였다. 기존의 계측방법이 갖는 제약사항 때문에 본 연구에서는 비교적 계측범위의 제한이 없고, 계측 구간의 구분이 수월한 이미지 프로세싱방법을 이용하여 넥킹구간의 변형률과 철근의 구간별 변형률을 상세하게 평가하였다. 마지막으로 본 연구를 통하여 얻어진 결과를 이용하여, 철근의 1축인장시험에서 한계상태변형률을 합리적으로 정의하기 위한 평가방법을 제시하고자 하였다. 철근의 극한거동 시 발생되는 넥킹구간에 대해서 평가한 결과, 넥킹구간의 길이에 대하여 철근의 직경과의 연관성을 분석할 수 있었으며, 이에 대한 상관식을 도출하였다. 본 연구를 통해서 철근의 표점구간 내 평균변형률 평가 시 넥킹구간의 변형률을 제외한 후 평가하는 것이 결과의 신뢰도가 가장 높게 나타남을 알 수 있었다. 또한 이미지 프로세싱 방법을 이용하여 철근의 변형률을 측정함으로써 기존 시험방법에서 재시험으로 규정하는 넥킹구간 위치가 표점구간의 바깥쪽에 위치한 경우에 대해서도 표점구간 내에 일부 존재하는 넥킹구간을 제외하는 것이 가능하여, 넥킹구간 발생 위치의 불확실성에 따른 실험의 불확실성을 해소할 수 있었다.

콘크리트 전단키에 의한 지하연속벽 수직시공이음부의 전단저항 성능 (Shear Resistance Performance of Vertical Construction Joints in Slurry Walls Using Concrete Shear Keys)

  • 이정영;김승원;김두기
    • 한국건축시공학회:학술대회논문집
    • /
    • 한국건축시공학회 2023년도 봄 학술논문 발표대회
    • /
    • pp.399-400
    • /
    • 2023
  • Current building structural standards require the shear strength and rigidity in the design of vertical construction joints in a slurry wall. This paper proposes a shear key resistance method for shear connection of vertical construction joints, and compares its structural performance with the currently prevalent method of shear friction rebar. The study found the structural performance of the shear key resistance method was significantly better than that of the shear friction rebar method.

  • PDF

A study on the seismic performance of reinforced concrete frames with dry stack masonry wall using concrete block

  • Joong-Won Lee;Kwang-Ho Choi
    • Earthquakes and Structures
    • /
    • 제24권3호
    • /
    • pp.205-215
    • /
    • 2023
  • Currently, many studies are underway at home and abroad on the seismic performance evaluation and dry construction method of the masonry structure. In this study, a dry stack masonry wall system without mortar using concrete blocks is proposed, and investigate the seismic performance of dry filling wall frames through experimental studies. First, two types of standard blocks and key blocks were designed to assemble dry walls of concrete blocks. And then, three types of experiments were manufactured, including pure frame, 1/2 height filling wall frame, and full height filling wall frame, and cyclic load experiments in horizontal direction were performed to analyze crack patterns, load displacement history, rebar deformation yield, effective stiffness change, displacement ductility, and energy dissipation capacity. According to the experimental results, the full height filling wall frame had the largest horizontal resistance against the earthquake load and showed a high energy dissipation capacity. However, the 1/2 height filling wall frame requires attention because the filling wall constrains the effective span of the column, limiting the horizontal displacement of the frame. In addition, the concrete block was firmly assembled in the vertical direction of the wall as the horizontal movement between the concrete blocks was allowed within installation margin, and there was no dropping of the assembled concrete block.

열화 및 공극을 고려한 원전 격납건물의 다층쉘요소모델과 내진성능 한계상태 (Multi-Layered Shell Model and Seismic Limit States of a Containment Building in Nuclear Power Plant Considering Deterioration and Voids)

  • 남현웅;홍기증
    • 한국지진공학회논문집
    • /
    • 제28권4호
    • /
    • pp.223-231
    • /
    • 2024
  • For the OPR1000, a standard power plant in Korea, an analytical model of the containment building considering voids and deterioration was built with multilayer shell elements. Voids were placed in the vulnerable parts of the analysis model, and the deterioration effects of concrete and rebar were reflected in the material model. To check the impact of voids and deterioration on the seismic performance of the containment building, iterative push-over analysis was performed on four cases of the analytical model with and without voids and deterioration. It was found that the effect of voids with a volume ratio of 0.6% on the seismic performance of the containment building was insignificant. The effect of strength reduction and cross-sectional area loss of reinforcement due to deterioration and the impact of strength increase of concrete due to long-term hardening offset each other, resulting in a slight increase in the lateral resistance of the containment building. To determine the limit state that adequately represents the seismic performance of the containment building considering voids and deterioration, the Ogaki shear strength equation, ASCE 43-05 low shear wall allowable lateral displacement ratio, and JEAC 4601 shear strain limit were compared and examined with the analytically derived failure point (ultimate point) in this study.

2주탑 콘크리트 사장교의 경계조건별 지진 취약도 분석 (Seismic Fragility Analysis by Boundary Conditions of a Two-pylon Concrete Cable-stayed Bridge)

  • 신연우;홍기남;연영모;지상원
    • 한국구조물진단유지관리공학회 논문집
    • /
    • 제24권5호
    • /
    • pp.77-85
    • /
    • 2020
  • 본 연구에서는 2주탑 콘크리트 사장교를 대상으로 경계조건에 따른 지진 취약도 곡선을 작성하고, 경계조건이 교량의 지진 취약도에 미치는 영향을 평가하고자 한다. 대상교량에 대한 해석모델이 Midas Civil을 사용하여 구축되었고 Fiber요소와 콘크리트, 철근의 재료모델을 적용하여 비선형 시간이력해석을 수행하였다. 주탑과 보강형 사이의 경계조건을 강결, 비구속, 포트받침, 면진받침의 총 4가지로 구분하여 각각의 경계조건에 대해 지진 취약도 곡선을 작성하였다. 주탑의 소성힌지구간과 연결부, 케이블을 취약부재로 선정하고 이 부재들에 대해 지진 취약도 곡선을 작성하였다. 분석결과 주탑의 소성힌지구간과 연결부에서는 면진받침모델이 가장 낮은 손상확률을 나타내고, 케이블의 지진 취약도는 경계조건에 의한 영향이 다른 부재에 비해 크지 않은 것을 알 수 있다.

Seismic Response Analysis of Lightly Reinforced Concrete Shear Walls

  • Rhee, In-Kyu
    • International Journal of Railway
    • /
    • 제3권2호
    • /
    • pp.73-82
    • /
    • 2010
  • Global and local behaviors of a lightly RC shear walls are investigated in this paper. For the sake of cyclic behaviors, nominal ground accelerations of 0.15 g, 0.40 g and 0.55 g which associated with natural periods of the walls are applied as listed in French CAMUS-2000 shake table test. Modified Kent & Park model, Drucker-Prager model for concrete material and $Giufr\acute{e}$-Menegotto-Pinto model for rebar are used for time history analyses using fiber/solids elements respectively. Alternatively, Eulerian beam analysis are discussed by imposing inelastic hinges at the most possible plastic hinge location using modified Takeda's trilinear model with stiffness reduction. Relative displacements, base shears, bending moments of 5-story shear building with 36-tons of mass under bi-lateral seismic excitation are extracted and compared with EC-8, PS-92 and KBC-09 provisions. Multi-scaled degradation process; material damage, elemental fracture and structural failure in turn is discussed in the view of numerical accuracy, efficiency and limitation depending on three different model-based analyses.

  • PDF