• 제목/요약/키워드: Seismic mass

검색결과 501건 처리시간 0.025초

Permanent Support for Tunnels using NMT

  • Barton, Nick
    • 한국암반공학회:학술대회논문집
    • /
    • 한국암반공학회 1995년도 정기총회 및 학술발표회
    • /
    • pp.1-26
    • /
    • 1995
  • Key aspects of the Norwegian Method of Tunnelling (NMT) are reviewed. These include a predictive method of support design using the six-parameter Q-system of rock mass characterisation. The rock mass rating or Q-value is updated during tunnel driving. The designed tunnel support generally consists of wet process, steel fibre reinforced shotcrete combined with fully grouted, untensioned rock bolts, Even in poor rock conditions S(fr) + B usually acts as the final rock reinforcement and tunnel lining. Since it is a drained lining, it is very economic compared to cast concrete with membranes. Light, free-standing steel liners are used to prevent water affecting the runnel environment. Rock mass conditions, and hence lining design and cost estimation can be assessed by careful use of seismic surveys. Relationships between the P-wave velocity, the rock mass deformation modulus and the Q-value have recently been established, where tunnel depth, rock porosity and the uniaxial compression strength of the rock are important variables. The rock mass modulus estimate, and simple index testing of the joints, provide the key input which joints are discretely represented (either in two dimensions with the UDEC code or in three dimensions with the 3DEC code) is generally favoured compared to continuum analysis. The latter may give a misleading impression of uniformity and deformations tend to be understimated. Q-system NMT designs of S(fr) + B (fibre reinforced shotcrete and bolting) are numerically checked and adjustments made to bolt capacities and shotcrete thickness if overloading is evident around the modelled profile.

  • PDF

A smeared crack model for seismic failure analysis of concrete gravity dams considering fracture energy effects

  • Hariri-Ardebili, Mohammad Amin;Seyed-Kolbadi, Seyed Mahdi;Mirzabozorg, Hasan
    • Structural Engineering and Mechanics
    • /
    • 제48권1호
    • /
    • pp.17-39
    • /
    • 2013
  • In the present paper, a coaxial rotating smeared crack model is proposed for mass concrete in three-dimensional space. The model is capable of applying both the constant and variable shear transfer coefficients in the cracking process. The model considers an advanced yield function for concrete failure under both static and dynamic loadings and calculates cracking or crushing of concrete taking into account the fracture energy effects. The model was utilized on Koyna Dam using finite element technique. Dam-water and dam-foundation interactions were considered in dynamic analysis. The behavior of dam was studied for different shear transfer coefficients considering/neglecting fracture energy effects. The results were extracted at crest displacement and crack profile within the dam body. The results show the importance of both shear transfer coefficient and the fracture energy in seismic analysis of concrete dams under high hydrostatic pressure.

2차원 유체-구조뭍-지반계의 지진응답해석 (Earthquake Response Analysis for 2-D Fluid-Structure-Soil Systems)

  • 윤정방;장수혁;김재민;홍선기
    • 한국전산구조공학회:학술대회논문집
    • /
    • 한국전산구조공학회 2000년도 봄 학술발표회논문집
    • /
    • pp.289-296
    • /
    • 2000
  • This paper presents a method of seismic analysis for a 2-D fluid-structure-soil interaction systems. With this method, the fluid can be modeled by spurious free 4-node displacement-based fluid elements which use rotational penalty and mass projection technique in conjunction with the one point reduced integration scheme to remove the spurious zero energy modes. The structure and the near-field soil are discretized by the standard 2-D finite elements, while the unbounded far-field soil is represented by the dynamic infinite elements in the frequency domain. Since this method directly models the fluid-structure-soil interaction systems, it can be applied to the dynamic analysis of a 2-D liquid storage structure with complex geometry. Finally, results of seismic analyses are presented for a spent fuel storage tank embedded in a layered half-space and a massive concrete dam on a layered half-space.

  • PDF

비정형 고층아파트에서의 구조체 분리 간격 (Structural Seperation of Unsymmetric Highrise Apartments)

  • 정하선;현창국;윤영호
    • 한국전산구조공학회:학술대회논문집
    • /
    • 한국전산구조공학회 1989년도 봄 학술발표회 논문집
    • /
    • pp.56-60
    • /
    • 1989
  • It is well known that the symmetric buildings have higher resistance than the unaymetric ones do under seismic load. However, it is sometimes inevitable to build an unsymmetric structure due to the site conditions or architectural needs. The unsymmetric building has structural disadvantages under seismic load. In such a case the structural seperation joints are often used to avoid those disadvantages. This paper presents a method to determine the width of the seperation joints for unsymmetric, reinforced concrete apartments structured by walls and slabs only. The variables of the study were the ratio of shear-wall stiffness to the building length in the same directron, the building height and the story mass.

  • PDF

2차원 유체-구조물-지반계의 지진응답해석 (Earthquake Response Analysis for 2-D Fluid-Structure-Soil Systems)

  • 윤정방;장수혁;김재민
    • 한국해양공학회:학술대회논문집
    • /
    • 한국해양공학회 2001년도 추계학술대회 논문집
    • /
    • pp.132-137
    • /
    • 2001
  • This paper presents a method of seismic analysis for a 2-D fluid-structure-soil interaction systems. With this method, the fluid can be modeled by spurious free 4-node displacement-based fluid elements which use rotational penalty and mass projection technique in conjunction with the one point reduced integration scheme to remove the spurious zero energy modes. The structure and the near-field soil are discretized by the standard 2-D finite elements, while the unbounded far-field soil is represented by the dynamic infinite elements in the frequency domain. Since this method directly models the fluid-structure-soil interaction systems, it can be applied to the dynamic analysis of a 2-D liquid storage structure with complex geometry. Finally, results of seismic analyses are presented for a spent fuel storage tank embedded in a layered half-space and a massive concrete dam on a layered half-space.

  • PDF

시험발파에 의한 연약암반 평가에 대한 연구 (Study on the Classification of Weak Rock by Test Blast)

  • 선우춘;전양수;천대성;한공창
    • 화약ㆍ발파
    • /
    • 제21권4호
    • /
    • pp.1-10
    • /
    • 2003
  • 연암평가는 굴착난이도 평가와 관계가 많은 것을 고려할 때 굴착과 관련되는 발파와 연관 지울 수 있다. 따라서 현장에서 소량의 화약을 사용하여 누두공시험에 의해 구해진 누두지수와 발파계수를 연암의 분류요소로 사용하기 위한 시도가 이루어 졌다. 또한 현지 지반의 탄성파속도와 암석의 파쇄에 대한 저항성 나타내는 Protodyakonov의 계수도 분류요소로 사용하여 연암의 분류를 실시하였다.

Reliability analysis of uncertain structures using earthquake response spectra

  • Moustafa, Abbas;Mahadevan, Sankaran
    • Earthquakes and Structures
    • /
    • 제2권3호
    • /
    • pp.279-295
    • /
    • 2011
  • This paper develops a probabilistic methodology for the seismic reliability analysis of structures with random properties. The earthquake loading is assumed to be described in terms of response spectra. The proposed methodology takes advantage of the response spectra and thus does not require explicit dynamic analysis of the actual structure. Uncertainties in the structural properties (e.g. member cross-sections, modulus of elasticity, member strengths, mass and damping) as well as in the seismic load (due to uncertainty associated with the earthquake load specification) are considered. The structural reliability is estimated by determining the failure probability or the reliability index associated with a performance function that defines safe and unsafe domains. The structural failure is estimated using a performance function that evaluates whether the maximum displacement has been exceeded. Numerical illustrations of reliability analysis of elastic and elastic-plastic single-story frame structures are presented first. The extension of the proposed method to elastic multi-degree-of-freedom uncertain structures is also studied and a solved example is provided.

Risk assessment of steel and steel-concrete composite 3D buildings considering sources of uncertainty

  • Lagaros, Nikos D.
    • Earthquakes and Structures
    • /
    • 제6권1호
    • /
    • pp.19-43
    • /
    • 2014
  • A risk assessment framework for evaluating building structures is implemented in this study. This framework allows considering sources of uncertainty both on structural capacity and seismic demand. In particular randomness on seismic load, incident angle, material properties, floor mass and structural damping are considered; in addition the choice of fibre modelling versus plastic hinge model is also considered as a source of uncertainty. The main objective of this work is to study the contribution of these sources of uncertainty on the fragilities of steel and steel-reinforced concrete composite 3D building structures. The fragility curves are expressed in the form of a two-parameter lognormal distribution where vertical statistics in conjunction with metaheuristic optimization are implemented for calculating the two parameters.

마찰진자형 Isolator의 특성 및 구조물 적용 실험연구 (An Experimental Study on Characteristics of Friction Pendulum Isolation Bearings and Its Application to a Structure)

  • 김영중;허영철;김병현
    • 한국지진공학회:학술대회논문집
    • /
    • 한국지진공학회 2001년도 추계 학술발표회 논문집 Proceedings of EESK Conference-Fall 2001
    • /
    • pp.356-363
    • /
    • 2001
  • The friction pendulum type seismic isolation system (FPS) using the PTFE based materials has been developed to provide a simple and effective way to achieve earthquake resistance for buildings. PTFE matrials are soft and apt to be deformed easily after a few working cycles. Instead of the usual PTFE materials, the Polyimide material was used in this research. Polyimide is harder than PTFE, but has smaller friction coefficient and longer duration fur usage. In this paper, various kinds of PTFE materials were tested to define the frictional characteristics compared with the Polyimide material. FPS was manufactured with fine surface roughness and used with Polyimide material to show the seismic isolation efficiency, and life duration when applied to a rigid mass model and a 5 stole frame model.

  • PDF

A simple approach for the fundamental period of MDOF structures

  • Zhao, Yan-Gang;Zhang, Haizhong;Saito, Takasuke
    • Earthquakes and Structures
    • /
    • 제13권3호
    • /
    • pp.231-239
    • /
    • 2017
  • Fundamental period is one of the most critical parameters affecting the seismic design of buildings. In this paper, a very simple approach is presented for estimating the fundamental period of multiple-degree-of-freedom (MDOF) structures. The basic idea behind this approach is to replace the complicated MDOF system with an equivalent single-degree-of-freedom (SDOF) system. To realize this equivalence, a procedure for replacing a two-degree-of-freedom (2-DOF) system with an SDOF system, known as a two-to-single (TTS) procedure, is developed first; then, using the TTS procedure successively, an MDOF system is replaced with an equivalent SDOF system. The proposed approach is expressed in terms of mass, stiffness, and number of stories, without mode shape or any other parameters; thus, it is a very simple method. The accuracy of the proposed method is investigated by estimating the fundamental periods of many MDOF models; it is found that the results obtained by the proposed method agree very well with those obtained by eigenvalue analysis.