• Title/Summary/Keyword: Seismic isolation table

Search Result 72, Processing Time 0.024 seconds

Evaluation of Seismic Responses of Isolated Bridges Considering the Flexibility of Piers (교각의 강성을 고려한 지진격리교량의 응답특성 평가)

  • Seo, Hyun-Woo;Kim, Nam-Sik;Cheung, Jin-Hwan
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2004.11a
    • /
    • pp.662-665
    • /
    • 2004
  • In this paper, based on shaking table test results on a seismically isolated bridge model, an inelastic numerical model is refined by using Bouc-Wen model representing the hysteretic behavior of isolators. Seismic responses of isolated bridges are numerically investigated varying with relative stiffness ratios, which is a ratio of the effective stiffness of isolator to the lateral stiffness of bridge pier. From the results, it is found that an adequate range of relative stiffness ratio could be defined for seismic design of isolated bridges without considering the flexibility of piers.

  • PDF

Experiment of an ABS-type control strategy for semi-active friction isolation systems

  • Lu, Lyan-Ywan;Lin, Ging-Long;Lin, Chen-Yu
    • Smart Structures and Systems
    • /
    • v.8 no.5
    • /
    • pp.501-524
    • /
    • 2011
  • Recent studies have discovered that a conventional passive isolation system may suffer from an excessive isolator displacement when subjected to a near-fault earthquake that usually has a long-period velocity pulse waveform. Semi-active isolation using variable friction dampers (VFD), which requires a suitable control law, may provide a solution to this problem. To control the VFD in a semi-active isolation system more efficiently, this paper investigates experimentally the possible use of a control law whose control logic is similar to that of the anti-lock braking systems (ABS) widely used in the automobile industry. This ABS-type controller has the advantages of being simple and easily implemented, because it only requires the measurement of the isolation-layer velocity and does not require system modeling for gain design. Most importantly, it does not interfere with the isolation period, which usually decides the isolation efficiency. In order to verify its feasibility and effectiveness, the ABS-type controller was implemented on a variable-friction isolation system whose slip force is regulated by an embedded piezoelectric actuator, and a seismic simulation test was conducted for this isolation system. The experimental results demonstrate that, as compared to a passive isolation system with various levels of added damping, the semi-active isolation system using the ABS-type controller has the better overall performance when both the far-field and the near-fault earthquakes with different PGA levels are considered.

A Study on Testing of 1/4-scale and Full-size Seismic Isolation Bearings (축소모델과 실모델 면진베어링의 성능실험에 관한 연구)

  • 정민기;정지만;김두훈
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 1996.04a
    • /
    • pp.194-202
    • /
    • 1996
  • An approach to increase the seismic resistance of large structures is to reduce the seismic forces, to which structures are subjected by base isolation systems. The anti-seismic performance of base-isolated beatings has been verified experimentally by shaking table tests. However, it may be difficult to perform the tests for the full-scale beatings of base-isolated structures. Therefore, the test program was designed to evaluate the reliability and properties of the beatings under a range of loading conditions including axial stress, loading frequency and direction, and temperature. The effects of scale were also evaluated by comparing the results of the 1/4-scale beatings with those from the full-scale bearings, and the ultimate behavior of both types of bearings with evaluated through a series of roll-out tests. This report draws comparisons among the different tests and bearings to determine the importance of various factors including load history, axial stress, and frequency. Comparisons between the 1/4-scale bearings were difficult because of the scaling effects in manufacturing and thermal radiation, but qualitative results from the 1/4-scale bearings can certainly be extrapolated the full-scale bearings.

  • PDF

Sloped rolling-type bearings designed with linearly variable damping force

  • Wang, Shiang-Jung;Sung, Yi-Lin;Hong, Jia-Xiang
    • Earthquakes and Structures
    • /
    • v.19 no.2
    • /
    • pp.129-144
    • /
    • 2020
  • In this study, the idea of damping force linearly proportional to horizontal isolation displacement is implemented into sloped rolling-type bearings in order to meet different seismic performance goals. In addition to experimentally demonstrating its practical feasibility, the previously developed analytical model is further modified to be capable of accurately predicting its hysteretic behavior. The numerical predictions by using the modified analytical model present a good match of the shaking table test results. Afterward, several sloped rolling-type bearings designed with linearly variable damping force are numerically compared with a bearing designed with conventional constant damping force. The initial friction damping force adopted in the former is designed to be smaller than the constant one adopted in the latter. The numerical comparison results indicate that when the horizontal isolation displacement does not exceed the designed turning point (or practically when subjected to minor or frequent earthquakes that seldom have a great displacement demand for seismic isolation), the linearly variable damping force design can exhibit a better acceleration control performance than the constant damping force design. In addition, the former, in general, advantages the re-centering performance over the latter. However, the maximum horizontal displacement response of the linearly variable damping force design, in general, is larger than that of the constant damping force design. It is particularly true when undergoing a horizontal isolation displacement response smaller than the designed turning point and designing a smaller value of initial friction damping force.

Construction of Design Table for Envelope Curve Analysis of Base Isolated Buildings (면진건물의 포락해석을 위한 설계용 도표 산정면진건물의 포락해석을 위한 설계용 도표 산정면진건물의 포락해석을 위한 설계용 도표 산정)

  • Lee, Hyun-Ho;Cheon, Yeong-Soo
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.10 no.2
    • /
    • pp.59-67
    • /
    • 2006
  • The aim of this study is to evaluate the design table for envelope curve analysis of base isolated buildings, which represent the period of base isolated buildings and the lateral displacement of base isolation devices. For the construction of design table, $V_E$ spectrum, which represents the energy, is developed instead of acceleration of seismic hazard. Based on the seismic coefficient of UBC 97, boundary period $T_G$ and maximum velocity response $V_0$ are proposed considering Korea seismic hazard. Using $T_G$ and $V_0$, finally, $V_E$ spectrum is developed for the four types of soil conditions. Base on the $V_E$ spectrum, design table for envelope curve analysis is also developed for soil types.

Shaking table tests of prestressed damping-isolation units using a spring and rubbers

  • Yang, Keun-Hyeok;Mun, Ju-Hyun;Im, Chae-Rim;Won, Eun-Bee
    • Earthquakes and Structures
    • /
    • v.23 no.4
    • /
    • pp.373-384
    • /
    • 2022
  • To improve the seismic performance of suspended ceiling structures, various vibration-damping devices have been developed. However, the devices made of metals have a limit in that they cause large deformation and seriously damages the exterior of the suspended ceiling structure from the wall. As a results, their strengthening effect of the suspended ceiling structure was minimal. Thus, this study employed a spring and vibration-proof rubber effectively controlled vibrations without increasing horizontal seismic loads on the ceiling to enhance the seismic resistance of suspended ceiling structures. The objective of the study is to examine the dynamic properties of a seismic damping-isolation unit (SDI) with various details developed. The developed SDI was composed of a spring, embossed rubbers, and prestressed bolts, which were the main factors enhancing the damping effect. The shaking table tests were performed on eight SDI specimens produced with the number of layers of embossed rubber (ns), presence or absence of a spring, prestressed force magnitude introduced in bolts (fps), and mass weight (Wm) as the main parameters. To identify the enhancement effect of the SDI, the dynamic properties of the control specimen with a conventional hanger bolt were compared to those of the SDI specimens. The SDI specimens were effective in reducing the maximum acceleration (Ac max), acceleration amplification factor (αp), relative displacement (δR), and increasing the damping ratio (ξ) when compared to the control specimen. The Ac max, αp, and δR of the SDI specimens with two rubbers, spring, and fps of 0.1fby, where fby is the yielding strength of the screw bolt were 57.8%, 58.0%, and 61.9% lower than those of the conventional hanger bolt specimens, respectively, resulting in the highest ξ (=0.127). In addition, the αp of the SDI specimens was 50.8% lower than those specified in ASCE 7 and FEMA 356. Consequently, to accurately estimate the αp of the SDI specimens, a simple model was proposed based on the functions of fps, stiffness constant of the spring (K), Wm, and ns.

Seismic Responses of Isolated Bridges Considering the Relative Stiffness Ratio (상대강성비를 고려한 지진격리교량의 응답특성)

  • Seo, Hyun-Woo;Kim, Nam-Sik;Cheung, Jin-Hwan
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.15 no.12 s.105
    • /
    • pp.1340-1346
    • /
    • 2005
  • In this study, based on shaking table test results on a seismically isolated bridge model, an inelastic numerical model is refined by using Bouc-Wen model representing the hysteretic behavior of isolators. Seismic responses of isolated bridges are numerically investigated varying with relative stiffness ratio(RSR), which is a ratio of the effective stiffness of isolator to the lateral stiffness of bridge pier, From the results, it is found that an adequate range of relative stiffness ratio could be defined for seismic design of isolated bridges without considering the flexibility of piers.

Multi-support excitation shaking table test of a base-isolated steel cable-stayed bridge (지진격리 강재 케이블 교량의 다지점 진동대 실험)

  • Kim, Seong-Do;Ahn, Jin-Hee;Kong, Young-Ee;Choi, Hyoung-Suk;Cheung, Jin-Hwan
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.19 no.4
    • /
    • pp.161-171
    • /
    • 2015
  • A series of tests was conducted for full-scale single-pylon asymmetric cable-stayed bridges using a system of multiple shaking tables. The 2-span bridge length was 28 m, and the pylon height was 10.2 m. 4 different base conditions were considered: the fixed condition, RB (rubber bearings), LRB (lead rubber bearings), and HDRB (high damping rubber bearings). Based on investigation of the seismic response, the accelerations and displacements in the axial direction of the isolated bridge were increased compared to non-isolated case. However, the strain of the pylon was decreased, because the major mode of the structure was changed to translation for the axial direction due to the dynamic mass. The response of the cable bridge could differ from the desired response according to the locations and characteristics of the seismic isolator. Therefore, caution is required in the design and prediction in regard to the location and behavior of the seismic isolator.

Experimental and numerical investigation of wire rope devices in base isolation systems

  • Calabrese, Andrea;Spizzuoco, Mariacristina;Losanno, Daniele;Barjani, Arman
    • Earthquakes and Structures
    • /
    • v.18 no.3
    • /
    • pp.275-284
    • /
    • 2020
  • The scope of this study is the comparison between experimental results of tests performed on a base isolated building using helical wire rope isolators (WRs), and results of Nonlinear Response History Analyses (NRHAs) performed using SAP 2000, a commercial software for structural analysis. In the first stage of this research, WRs have been tested under shear deformation beyond their linear range of deformation, and analytical models have been derived to describe the nonlinear response of the bearings under different directions of loading. On the following stage, shaking table tests have been carried out on a 1/3 scale steel model isolated at the base by means of curved surface sliders (CSS) and WRs. The response of the structure under ground motion excitation has been compared to that obtained using numerical analyses in SAP 2000. The feasibility of modelling the nonlinear behavior of the tested isolation layer using multilinear link elements embedded in SAP 2000 is discussed in this paper, together with the advantages of using WRs as supplemental devices for CSSs base isolated structures.

Seismic Performance Improvement of Liquid Storage Tank using Lead Rubber Bearing (납고무받침을 이용한 액체저장탱크 내진성능향상)

  • Kim, Hu-Seung;Oh, Ju;Jung, Hie-Young
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.39 no.3
    • /
    • pp.441-449
    • /
    • 2019
  • Recently, interest in the seismic safety of structures is rising in South Korea due to the occurrences of earthquakes of 5.0 or greater magnitudes such as Gyeongju earthquake (September 2016) and Pohang earthquake (November 2017). In particular, the importance of living facilities that cause human injuries and property losses is more emphasized. Representative living facilities include gas and oil storage facilities and water tanks. In this study, the seismic performance of liquid storage tanks is improved by applying the lead rubber bearing, which is a seismic isolation method. The lead rubber bearing was designed considering the foundation of liquid storage tanks, and the general properties of the lead rubber bearing were verified through compression and shear tests using fabricated specimens. Furthermore, the behaviors of liquid storage tanks according to seismic and non-seismic isolations were analyzed through durability test, shaking table test and finite element analysis using ANSYS.