• 제목/요약/키워드: Seismic isolation table

검색결과 72건 처리시간 0.026초

Centrifuge shaking table tests on a friction pendulum bearing isolated structure with a pile foundation in soft soil

  • Shu-Sheng, Qu;Yu, Chen;Yang, Lv
    • Earthquakes and Structures
    • /
    • 제23권6호
    • /
    • pp.517-526
    • /
    • 2022
  • Previous studies have shown that pile-soil interactions have significant influences on the isolation efficiency of an isolated structure. However, most of the existing tests were carried out using a 1-g shaking table, which cannot reproduce the soil stresses resulting in distortion of the simulated pile-soil interactions. In this study, a centrifuge shaking table modelling of the seismic responses of a friction pendulum bearing isolated structure with a pile foundation under earthquakes were conducted. The pile foundation structure was designed and constructed with a scale factor of 1:100. Two layers of the foundation soil, i.e., the bottom layer was made of plaster and the upper layer was normal soil, were carefully prepared to meet the similitude requirement. Seismic responses, including strains, displacement, acceleration, and soil pressure were collected. The settlement of the soil, sliding of the isolator, dynamic amplification factor and bending moment of the piles were analysed to reveal the influence of the soil structure interaction on the seismic performance of the structure. It is found that the soil rotates significantly under earthquake motions and the peak rotation is about 0.021 degree under 24.0 g motions. The isolator cannot return to the initial position after the tests because of the unrecoverable deformation of the soil and the friction between the curved surface of the slider and the concave plate.

지진 격리된 교량의 내진성능에 대한 실험적 연구 (Experimental Study on Seismic Performance of Base-Isolated Bridge)

  • Chung, Woo-Jung;Yun, Chung-Bang;Kim, Nam-Sik;Seo, Ju-Won
    • 한국지진공학회:학술대회논문집
    • /
    • 한국지진공학회 1998년도 추계 학술발표회 논문집 Proceedings of EESK Conference-Spring 1998
    • /
    • pp.144-153
    • /
    • 1998
  • Base isolation is an innovative design strategy that provides a practical alternative for the seismic design of structures. Base isolators, mainly employed to isolate large structures subjected to earthquake ground excitations and to rehabilitate structures damaged by past earthquakes, deflect and absorb the seismic energy horizontally transmitted to the structures. This study demonstrates that the base isolation system may offer effective performance for bridges during severe seismic events through shaking table tests. Two base isolation system using laminated rubber bearings with and without hydraulic dampers are tested. The test results strongly show that the laminated rubber bearings cause the natural period of the bridge structure increased considerably, which results in the deck acceleration and the shear forces on the piers reduced significantly. The results also demonstrate that the hydraulic dampers enhance the system's capacity in dissipating energy to reduce the relative displacement between the bridge deck and the pier.

  • PDF

Self-centering passive base isolation system incorporating shape memory alloy wires for reduction in base drift

  • Sania Dawood;Muhammad Usman;Mati Ullah Shah;Muhammad Rizwan
    • Smart Structures and Systems
    • /
    • 제31권5호
    • /
    • pp.531-543
    • /
    • 2023
  • Base isolation is one of the most widely implemented and well-known technique to reduce structural vibration and damages during an earthquake. However, while the base-isolated structure reduces storey drift significantly, it also increases the base drifts causing many practical problems. This study proposes the use of Shape Memory Alloys (SMA) wires for the reduction in base drift while controlling the overall structure vibrations. A multi-degree-of-freedom (MDOF) structure along with base isolators and Shape-Memory-Alloys (SMA) wires in diagonal is tested experimentally and analytically. The isolation bearing considered in this study consists of laminates of steel and silicon rubber. The performance of the proposed structure is evaluated and studied under different loadings including harmonic loading and seismic excitation. To assess the seismic performance of the proposed structure, shake table tests are conducted on base-isolated MDOF frame structure incorporating SMA wires, which is subjected to incremental harmonic and historic seismic loadings. Root mean square acceleration, displacement and drift are analyzed and discussed in detail for each story. To better understand the structure response, the percentage reduction of displacement is also determined for each story. The result shows that the reduction in the response of the proposed structure is much better than conventional base-isolated structure.

Vibration characteristic of rubber isolation plate-shell integrated concrete liquid-storage structure

  • Cheng, Xuansheng;Qi, Lei;Zhang, Shanglong;Mu, Yiting;Xia, Lingyu
    • Structural Engineering and Mechanics
    • /
    • 제81권6호
    • /
    • pp.691-703
    • /
    • 2022
  • To obtain the seismic response of lead-cored rubber, shape memory alloy (SMA)-rubber isolation Plate-shell Integrated Concrete Liquid-Storage Structure (PSICLSS), based on a PSICLSS in a water treatment plant, built a scale experimental model, and a shaking table test was conducted. Discussed the seismic responses of rubber isolation, SMA-rubber isolation PSICLSS. Combined with numerical model analysis, the vibration characteristics of rubber isolation PSICLSS are studied. The results showed that the acceleration, liquid sloshing height, hydrodynamic pressure of rubber and SMA-rubber isolation PSICLSS are amplified when the frequency of seismic excitation is close to the main frequency of the isolation PSICLSS. The earthquake causes a significant leakage of liquid, at the same time, the external liquid sloshing height is significantly higher than internal liquid sloshing height. Numerical analysis showed that the low-frequency acceleration excitation causes a more significant dynamic response of PSICLSS. The sinusoidal excitation with first-order sloshing frequency of internal liquid causes a more significant sloshing height of the internal liquid, but has little effect on the structural principal stresses. The sinusoidal excitation with first-order sloshing frequency of external liquid causes the most enormous structural principal stress, and a more significant external liquid sloshing height. In particular, the principal stress of PSICLSSS with long isolation period will be significantly enlarged. Therefore, the stiffness of the isolation layer should be properly adjusted in the design of rubber and SMA-rubber isolation PSICLSS.

Effects of Isolation Period Difference and Beam-Column Stiffness Ratio on the Dynamic Response of Reinforced Concrete Buildings

  • Chun, Young-Soo;Hur, Moo-Won
    • International Journal of Concrete Structures and Materials
    • /
    • 제9권4호
    • /
    • pp.439-451
    • /
    • 2015
  • This study analyzed the isolation effect for a 15-story reinforced concrete (RC) building with regard to changes in the beam-column stiffness ratio and the difference in the vibration period between the superstructure and an isolation layer in order to provide basic data that are needed to devise a framework for the design of isolated RC buildings. First, this analytical study proposes to design RC building frames by securing an isolation period that is at least 2.5 times longer than the natural vibration period of a superstructure and configuring a target isolation period that is 3.0 s or longer. To verify the proposed plan, shaking table tests were conducted on a scaled-down model of 15-story RC building installed with laminated rubber bearings. The experimental results indicate that the tested isolated structure, which complied with the proposed conditions, exhibited an almost constant response distribution, verifying that the behavior of the structure improved in terms of usability. The RC building's response to inter-story drift (which causes structural damage) was reduced by about one-third that of a non-isolated structure, thereby confirming that the safety of such a superstructure can be achieved through the building's improved seismic performance.

원전 주제어실 3차원 층 지진격리시스템의 진동대 실험 연구 (Shaking Table Experimental Study on 3-Dimensional Floor Isolation in Main Control Room of Nuclear Power Plant)

  • 이경진;함경원;서용표;윤현도
    • 한국지진공학회논문집
    • /
    • 제12권1호
    • /
    • pp.57-66
    • /
    • 2008
  • 본 연구에서는 원전 주제어실의 3차원 층 지진격리시스템에 대한 지진동 저감성능과 적용성을 평가하기 위해서 실험연구를 수행하였다. 3차원 층 지진격리시스템에 적용하기 위해서 마찰진자시스템과 에어 스프링을 설계하고 제작하였다. 제어 캐비닛과 액세스 플로어, 격자 프레임, 4개의 마찰진자와 에어 스프링으로 구성된 원전 주제어실 부분 실험모형을 2종류 제작하여 층 지진격리시스템의 원전 적용성을 평가하였다. 실험을 위해서 원전 주제어실의 운전기준지진(OBE)과 안전정지지진(SSE)의 수직방향, 수평방향 층 응답 스펙트럼을 이용하여 인공지진 시간이력을 만들어서 진동대 실험에 사용하였다. 입력지진에 대한 실험모형의 지진응답은 비 지진격리에 비해 3차원 층 지진격리시스템을 적용한 경우, 우수한 지진동 저감특성을 나타냈다

건축물 내 방송통신설비를 위한 면진장치의 동적거동 (Dynamic Responses of Base Isolation Devices for Telecommunication Equipment in Building Structures)

  • 정새벽;최형석;서영득;정동혁
    • 한국구조물진단유지관리공학회 논문집
    • /
    • 제26권1호
    • /
    • pp.39-48
    • /
    • 2022
  • 지진 발생 시 방송통신서비스는 현장 구조 및 효과적인 복구 작업에 직결된다. 최근에 다양한 면진장치들이 방송통신설비의 심각한 피해를 방지하기 위하여 건물 층과 방송통신설비의 바닥부 사이에 설치하는 방법이 널리 사용되고 있다. 하지만 긴 고유주기를 가진 건물은 공진현상에 따른 예상치 못한 응답증폭으로 인하여 더 큰 피해가 발생할 수도 있다. 따라서 본 연구에서는 두 개의 면진장치를 선정 후 중층, 고층건물의 해석적, 실험적 연구를 통하여 면진장치가 바닥부에 설치된 방송통신설비의 내진 안전성을 평가를 목표로 한다. 해석적 연구를 수행하여 가진 시 중층, 고층건물 최고층의 저주파수 영역대의 동적응답을 확인하였다. 또한 해석적 연구에서 확보한 층응답을 바닥부에 면진장치가 설치된 방송통신 설비를구비하여 실증 실험을 통해 내진안정성을 평가하였다.

E-Isolation : High-performance Dynamic Testing Installation for Seismic Isolation Bearings and Damping Devices

  • Yoshikazu Takahashi;Toru Takeuchi;Shoichi Kishiki;Yozo Shinozaki;Masako Yoneda;Koichi Kajiwara;Akira Wada
    • 국제초고층학회논문집
    • /
    • 제12권1호
    • /
    • pp.93-105
    • /
    • 2023
  • Seismic isolation and vibration control techniques have been developed and put into practical use by challenging researchers and engineers worldwide since the latter half of the 20th century, and after more than 40 years, they are now used in thousands of buildings, private residences, highways in many seismic areas in the world. Seismic isolation and vibration control structures can keep the structures undamaged even in a major earthquake and realize continuous occupancy. This performance has come to be recognized not only by engineers but also by ordinary people, becoming indispensable for the formation of a resilient society. However, the dynamic characteristics of seismically isolated bearings, the key elements, are highly dependent on the size effect and rate-of-loading, especially under extreme loading conditions. Therefore, confirming the actual properties and performance of these bearings with full-scale specimens under prescribed dynamic loading protocols is essential. The number of testing facilities with such capacity is still limited and even though the existing labs in the US, China, Taiwan, Italy, etc. are conducting these tests, their dynamic loading test setups are subjected to friction generated by the large vertical loads and inertial force of the heavy table which affect the accuracy of measured forces. To solve this problem, the authors have proposed a direct reaction force measuring system that can eliminate the effects of friction and inertia forces, and a seismic isolation testing facility with the proposed system (E-isolation) will be completed on March 2023 in Japan. This test facility is designed to conduct not only dynamic loading tests of seismic isolation bearings and dampers but also to perform hybrid simulations of seismically isolated structures. In this paper, design details and the realization of this system into an actual dynamic testing facility are presented and the outcomes are discussed.

Design theory and method of LNG isolation

  • Sun, Jiangang;Cui, Lifu;Li, Xiang;Wang, Zhen;Liu, Weibing;Lv, Yuan
    • Earthquakes and Structures
    • /
    • 제16권1호
    • /
    • pp.1-9
    • /
    • 2019
  • To provide a simplified method for the base isolation design of LNG tanks, such as $16{\times}104m^3$ LNG tanks, we conducted a derivation and calculation example analysis of the dynamic response of the base isolation of LNG storage tanks, using dynamic response analysis theory with consideration of pile-soil interaction. The ADINA finite element software package was used to conduct the numerical simulation analysis, and compare it with the theoretical solution. The ground-shaking table experiment of LNG tank base isolation was carried out simultaneously. The results show that the pile-soil interaction is not obvious under the condition of base isolation. Comparing base isolation to no isolation, the seismic response clearly decreases, but there is less of an effect on the shaking wave height after adopting pile top isolation support. This indicates that the basic isolation measures cannot control the wave height. A comparison of the shaking table experiment with the finite element solution and the theoretical solution shows that the finite element solution and theoretical solution are feasible. The three experiments are mutually verified.

Shaking table experiment on a steel storage tank with multiple friction pendulum bearings

  • Zhang, Ruifu;Weng, Dagen;Ge, Qingzi
    • Structural Engineering and Mechanics
    • /
    • 제52권5호
    • /
    • pp.875-887
    • /
    • 2014
  • The aim of the shaking table experiment is to verify the isolation effect of a storage liquid tank with multiple friction pendulum bearings. A 1:20 scale model of a real storage liquid tank that is widely used in the petroleum industry was examined by the shaking table test to compare its anchored base and isolated base. The seismic response of the tank was assessed by employing the time history input. The base acceleration, wave height and tank wall stress were used to evaluate the isolation effect. Finally, the influences of the bearing performance that characterizes the isolated tank, such as the friction force and residual displacement, were discussed.