• 제목/요약/키워드: Seismic isolation table

검색결과 71건 처리시간 0.022초

전기통신설비를 위한 옥내외 겸용 면진테이블 설계 (Design of a Seismic Isolation Table for both indoor and outdoor Electrical Communication Equipment)

  • 이춘세;안형준;이택원;손인철
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2009년도 추계학술대회 논문집
    • /
    • pp.472-472
    • /
    • 2009
  • The safety of cultural properties, medical treatment and electrical communication equipments in a building was hardly considered against the earthquake induced vibration, while the integrity of the building structure has been taken into account through the resistant earthquake design. This paper presents design of a seismic isolation table for both indoor and outdoor electrical communication equipment. First of all, artificial earthquake waves compatible with floor and ground response spectra for electrical communication equipments are generated using previously recorded seismic waves. Two kinds of one-degree-of-freedom seismic isolation table systems: spring-linear damper and spring-friction damper systems are considered and their responses to artificial earthquake waves are simulated. Design parameter study for two seismic isolation tables are performed through simulations and a seismic isolation table for both indoor and outdoor electrical communication equipment is designed considering the simulation results.

  • PDF

테프론형 기초지진격리장치의 성능평가 (Evaluation of Performance of the Teflon-Type Seismic Foundation Isolation System)

  • 손수원;김응수;나건하;김진만
    • 한국지진공학회논문집
    • /
    • 제21권3호
    • /
    • pp.125-135
    • /
    • 2017
  • Various seismic isolation methods are being applied to bridges and buildings to improve their seismic performance. Most seismic isolation systems are the structural seismic isolation systems. In this study, the seismic performance of geotechnical seismic isolation system capable of isolating the lower foundation of the bridge structure from ground was evaluated. The geotechnical seismic isolation system was built with teflon, and the model structure was made by adopting the similitude law. The response acceleration for sinusoidal waves of various amplitudes and frequencies and seismic waves were analyzed by performing 1-G shaking table experiments. Fixed foundation, Sliding foundation, and Rocking foundation were evaluated. The results of this study indicated that the Teflon-type seismic foundation isolation system is effective in reducing the acceleration transmitted to the superstructure subject to large input ground motion. Response spectrum of the Rocking and Sliding foundation structures moves to the long period, while that of Fixed foundation moves to short period.

Seismic performance and design of bridge piers with rocking isolation

  • Chen, Xingchong;Xia, Xiushen;Zhang, Xiyin;Gao, Jianqiang
    • Structural Engineering and Mechanics
    • /
    • 제73권4호
    • /
    • pp.447-454
    • /
    • 2020
  • Seismic isolation technology has a wide application to protect bridges from earthquake damage, a new designed bridge pier with seismic isolation are provided for railways in seismic regions of China. The pier with rocking isolation is a self-centering system under small and moderate earthquakes, and the unbonded prestressed tendons are used to prevent overturning under strong earthquakes. A numerical model based on pseudo-static testing results is presented to evaluate the seismic performance of isolation bridge piers, and is validated by the shaking table test. It is found that the rocking response and the loss of prestressing for the bridge pier increase with the increase of earthquake intensity. Besides, the intensity and spectral characteristics of input ground motion have great influence on displacement of the top and bottom of the bridge pier, while have less influence on the bending moment of the pier bottom. Experimental and numerical results show that the rocking-isolated piers presented in this study have good seismic performance, and it provides an alternative way for the railway bridge in the regions with high occurrence of earthquakes. Therefore, we provide the detailed procedures for seismic design of the rocking-isolated bridge pier, and a case study of the seismic isolation design with rocking piers is carried out to popularize the seismic isolation methods.

기기면진을 위한 면진장치의 거동분석실험 (II) : 감쇠특성 분석 (An Experimental Study of the Seismic Isolation Systems (or Equipment Isolation : Evaluation of Damping Effect)

  • 전영선;김민규;최인길;김영중
    • 한국지진공학회:학술대회논문집
    • /
    • 한국지진공학회 2003년도 추계 학술발표회논문집
    • /
    • pp.411-418
    • /
    • 2003
  • This paper presents the results of experimental studies on the equipment isolation effect in the nuclear containment. for this Purpose, shaking table tests were performed. The natural rubber bearing (NRB) and high damping rubber bearing (HDRB) were selected for the isolation. Peak ground acceleration, damping characteristics of isolation system and frequency contents of selected earthquake motions were considered. finally, it is presented that the NRB and HDRB systems are effective for the small equipment isolation and the damping of isolation systems can be affected to the seismic isolation effect.

  • PDF

원전 주제어실 삼차원 면진시스템 수직방향 저감효과 시험연구 (Experimental Study on Vertical Reduction Effectiveness of Main Control Room of NPP using 3-Dimensional Isolation System)

  • 함경원;이경진;서용표
    • 한국지진공학회:학술대회논문집
    • /
    • 한국지진공학회 2006년도 학술발표회 논문집
    • /
    • pp.417-423
    • /
    • 2006
  • The seismic characteristics with 3-Dimensional isolation systems have been studied using a shaking table system. In this study, we made nuclear power plant main control room floor systems and several seismic shaking table tests with and without isolation systems were conducted to evaluate floor isolation effectiveness. Isolation systems have showed large reduction effectiveness in acceleration and response spectra with x and z direction respectively, but horizontal isolation is more effective than vertical one It is required to make isolation systems of which design frequency is below 1Hz when applied to main control room of NPP, but considering much difficulties in making such isolation systems, it is recommended that much consideration should be taken into account when applied to main control room of NPP.

  • PDF

Experimental Study on Seismic Performance of Base-Isolated Bridge

  • Chung, Woo Jung;Yun, Chung Bang;Kim, Nam Sik;Seo, Ju Won
    • 한국지진공학회논문집
    • /
    • 제2권3호
    • /
    • pp.51-60
    • /
    • 1998
  • Base isolation is an innovative design strategy that provides a practical alternative for the seismic design of structures. Base isolators, mainly employed to isolate large structures subjected to earthquake ground excitations and to rehabilitate structures damaged by past earthquakes, deflect and absorb the seismic energy horizontally transmitted to the structures. This study demonstrated that the base isolation system may offer effective performance for bridges during severe seismic events through shaking table tests. Two base isolation systems using laminated rubber bearings with and without hydraulic dampers are tested. The test results strongly show that the laminate rubber bearings cause the natural period of the bridge structure increased considerably, which results in the deck acceleration and the shear forces on the deck acceleratino and the shear forces on the piers reduced significantly. The results also demonstrate that the hydraulic dampers enhance the system's capacity in dissipating energy to reduce the relative displacement between the bridge deck and the pier.

  • PDF

적층고무베어링을 사용한 면진구조물의 지진해석방법 (Seismic Analysis Method for the Seismically Isolated Structures Using LRBs)

  • Koo, Gyeong-Hoi;Lee, Jae-Han
    • 한국전산구조공학회:학술대회논문집
    • /
    • 한국전산구조공학회 2001년도 가을 학술발표회 논문집
    • /
    • pp.553-560
    • /
    • 2001
  • To substantiate the application of LRB(Laminated Rubber Bearing) to the seismic isolation system, it is necessary to develop a seismic analysis method considering the non-linear behavior of LRBs, which may significantly affect the seismic responses. In this paper, seismic analyses and shaking table tests are carried out for a seismically isolated structure using four LRBs. The parameter equations of seismic isolation frequency are obtained from the shaking table tests and the quasi-static tests of LRB itself to investigate the effects of the LRB characteristics in the prediction of maximum peak acceleration responses by analysis. From the comparison of the maximum peak acceleration responses obtained from numerical analyses and experiments, it is verified that the horizontal stiffness variations of LRB should be carefully considered in seismic analysis to obtain more accurate results.

  • PDF

면진된 모형 비상디젤발전기의 지진응답 실험 (Shaking Table Test of Isolated EDG Model)

  • 김민규;전영선
    • 한국지진공학회논문집
    • /
    • 제11권3호
    • /
    • pp.33-42
    • /
    • 2007
  • 본 연구에서는 원전내 주요 안전관련 기기중 비상디젤발전기를 대상으로 한 진동대 실험을수행하였다. 원전의 비상디젤 발전기는 원전 전체의 노심손상빈도에 미치는 영향이 매우 크며 또한 면진장치를 설치하여 지진력을 저감시킬 경우 큰 폭으로 노심손상빈도를 감소시킬 수 있으며, 가동중 발생하는 소음과 진동으로 인하여 주변 구조물과 기기에 영향을 미치기도 한다. 따라서 지진력 저감과 기계 진동의 저감효과를 동시에 고려하기 위한 면진장치를 적용하여 그 효과를 평가하여 보고자하였다. 면진장치로는 코일스프링과 점성 댐퍼가 결합된 형태의 면진장치를 선정하였다. 실험의 대상으로 하는 비상디젤발전기는 영광 5,6호기에 설치되어 있는 모델로서 축소모형을 제작하였으며, 제작된 모형에 적합한 코일스프링-점성댐퍼 시스템을 설계하여 제작하였다. 제작된 면진장치를 축소모형에 설치하여 설계지진을 이용한 진동대 시험을 수행하여 지진력 저감효과를 분석하였다 본 연구를 통하여 설계지진의 경우 20% 그리고 Scenario 지진의 경우 70% 까지의 지진력 저감이 가능한 것을 확인하였으며, 면진장치의 기계적 특성이 설계값과 일치하지 않음으로 인하여 실제 지진력 저감효과가 크게 변할 수 있음을 확인할 수 있었다.

A PERFORMANCE ASSESSMENT OF A BASE ISOLATION SYSTEM FOR AN EMERGENCY DIESEL GENERATOR IN A NUCLEAR POWER PLANT

  • Choun, Young-Sun;Kim, Min-Kyu
    • Nuclear Engineering and Technology
    • /
    • 제40권4호
    • /
    • pp.285-298
    • /
    • 2008
  • This study evaluates the performance of a coil spring-viscous damper system for the vibration and seismic isolation of an Emergency Diesel Generator (EDG) by measuring its operational vibration and seismic responses. The vibration performance of a coil spring-viscous damper system was evaluated by the vibration measurements for an identical EDG set with different base systems - one with an anchor bolt system and the other with a coil spring-viscous damper system. The seismic performance of the coil spring-viscous damper system was evaluated by seismic tests with a scaled model of a base-isolated EDG on a shaking table. The effects of EDG base isolation on the fragility curve and core damage frequency in a nuclear power plant were also investigated through a case study.

Suspended Columns for Seismic Isolation in Structures (SCSI): Experimental and numerical studies

  • Shahabi, Ali Beirami;Ahari, Gholamreza Zamani;Barghian, Majid
    • Earthquakes and Structures
    • /
    • 제19권1호
    • /
    • pp.17-28
    • /
    • 2020
  • In this paper, a modified and improved seismic isolation system called suspension columns for seismic isolation was investigated. An experimental study of the proposed isolation method, together with theoretical and numerical analyses, has thoroughly been conducted. In the proposed method, during the construction of the foundation, some cavities are created at the position of the columns inside the foundation and the columns are placed inside the cavities and hanged from the foundation by flexible cables rather being directly connected to the foundation. Since the columns are suspended and due to the gap between the columns and walls of the cavities, the structure is able to move freely to each side thus, the transmitted seismic actions are reduced. The main parameter of this isolation technique is the length of the suspension cable. As the cable length is changed, the natural frequency of the structure is also changed, thus, the desired frequency can be achieved by means of an appropriate cable length. As the experimental phase of the study, a steel frame structure with two floors was constructed and subjected to the acceleration of three earthquakes using a shaking table with different hanging cable lengths. The structural responses were recorded in terms of acceleration and relative displacement. The experimental results were compared to the theoretical and numerical ones, obtained from the MATLAB programming and the finite element software ABAQUS, showing a suitable agreement between them. The results confirm the effectiveness of the proposed isolation method in reducing the seismic effects on the structure.