• 제목/요약/키워드: Seismic isolation design and analysis

검색결과 124건 처리시간 0.021초

Seismic evaluation of isolated skewed bridges using fragility function methodology

  • Bayat, M.;Daneshjoo, F.;Nistico, N.;Pejovic, J.
    • Computers and Concrete
    • /
    • 제20권4호
    • /
    • pp.419-427
    • /
    • 2017
  • A methodology, based on fragility functions, is proposed to evaluate the seismic performance of seismic isolated $45^{\circ}$ skewed concrete bridge: 1) twelve types of seismic isolation devices are considered based on two different design parameters 2) fragility functions of a three-span bridge with and without seismic isolation devices are analytically evaluated based on 3D nonlinear incremental dynamic analyses which seismic input consists of 20 selected ground motions. The optimum combinations of isolation device design parameters are identified comparing, for different limit states, the performance of 1) the Seismic Isolated Bridges (SIB) and 2) Not Seismic Isolated Bridge (NSIB) designed according to the AASHTO standards.

L.R.B.를 이용한 면진설계의 내지진 안전성 연구 (Study on Seismic Resistant Safety of Seismic Isolation Design for Bridge using L.R.B.)

  • 이철희;신재인
    • 한국구조물진단유지관리공학회 논문집
    • /
    • 제6권2호
    • /
    • pp.121-126
    • /
    • 2002
  • Due to few earthquakes in our country, one generally has thought to be safe from earthquakes. However, severe earthquakes occurred in Dangsan and Hyogohyeon which one had regarded as the zone that had not been risky for earthquakes, so that so many people died and a lot of buildings and bridges were destroyed. This event surprised our country and we undertook preparation for earthquakes on the full scale. The concept of seismic design was induced in the country which was poor in it for the scarcity of recognition and insufficiency of funds. Recently, many specialists are enforcing the provisions of seismic design. Therefore, this study introduces the method which combines PC-LEADeR( design program for L.R.B.) with LUSAS(linear elastic analysis) and performs the seismic isolation design more elaborately and simply. It verifies the propriety of that method, and it also examine the factors that affect the response of the bridges. Seismic isolation design for bridge using L.R.B. provides both economical efficiency and superior seismic performance. Second, the results between by the method proposed and by time history analysis have 20% error at the maximum. That is, the method proposed very appropriate.

면진된 KALIMER 원자로 구조물의 내진설계 및 지진해석 (Seismic Design and Analysis of Seismically Isolated KALIMER Reactor Structures)

  • 이형연
    • 한국지진공학회논문집
    • /
    • 제3권1호
    • /
    • pp.75-92
    • /
    • 1999
  • 본 연구에서는 현재 국내에서 면진설계를 적용하여 개발중인 KALIMER(Korea Advanced Llquid Metal Reactor) 액체금속로에 대한 내진설계 및 지진해석을 위하여 핵심구조물인 원자로구조물에 대한 단순 지진해석모델을 개발하였다 이를 이용하여 면진설계의 경우와 비면진 설계의 경우에 대한 동특성분석과 시간이력 지진해석을 수행하여 비교평가하였다. 또한 ASME 설계코드에 따른 응력한계요건을 검토하기 위하여 등가 지진응력해석을 수행하고 이로부터 내진여유도를 계산하였다 지진안전성에 대한 하나의 지표로서 원자로 구조물이 견딜수 있는 최대지진하중을 결정하기 위한 한계지진하중(Limit seismic load)을 저의하였다 지진해석결과 면진된 KALIMER 원자로구조믈은 비면진된 경우에 비하여 가속도응답과 구조물간의 상대변위응답이 현저히 감소하였고 충분한 내진여유도로 인하여 한계지진하중이 0.8g로 나타났다.

  • PDF

LNG 저장탱크의 면진시스템 적용을 위한 내진설계 (Seismic Design for Application of LNG Storage Tank Isolation System)

  • 서기영;박현재;김남식;김재민;양성영
    • 한국소음진동공학회논문집
    • /
    • 제24권3호
    • /
    • pp.227-235
    • /
    • 2014
  • The demand of natural gas is gradually increasing as a clean fuel in the world. Therefore, LNG storage tanks and related facilities of the importance of leading a community-based facility have emerged. The seismic design of LNG storage tank including seismic analysis have been developed steadily. But, the seismic analysis and design techniques for LNG storage tanks are lacking, in Korea. Consequently, it is necessary to develop an analysis model that LNG storage tanks in isolation system can describe the behavior. Further, LNG storage tank capable of ensuring safety and economy, it is necessary to develop design techniques. The studies have suggested seismic design procedures of LNG storage tanks with isolation system including triple-FPB and idealized complex hysteresis model of triple-FPB.

Large strain nonlinear model of lead rubber bearings for beyond design basis earthquakes

  • Eem, Seunghyun;Hahm, Daegi
    • Nuclear Engineering and Technology
    • /
    • 제51권2호
    • /
    • pp.600-606
    • /
    • 2019
  • Studies on the application of the lead rubber bearing (LRB) isolation system to nuclear power plants are being carried out as one of the measures to improve seismic performance. Nuclear power plants with isolation systems require seismic probabilistic safety assessments, for which the seismic fragility of the structures, systems, and components needs be calculated, including for beyond design basis earthquakes. To this end, seismic response analyses are required, where it can be seen that the behaviors of the isolation system components govern the overall seismic response of an isolated plant. The numerical model of the LRB used in these seismic response analyses plays an important role, but in most cases, the extreme performance of the LRB has not been well studied. The current work therefore develops an extreme nonlinear numerical model that can express the seismic response of the LRB for beyond design basis earthquakes. A full-scale LRB was fabricated and dynamically tested with various input conditions, and test results confirmed that the developed numerical model better represents the behavior of the LRB over previous models. Subsequent seismic response analyses of isolated nuclear power plants using the model developed here are expected to provide more accurate results for seismic probabilistic safety assessments.

Dynamic assessment of the seismic isolation influence for various aircraft impact loads on the CPR1000 containment

  • Mei, Runyu;Li, Jianbo;Lin, Gao;Zhu, Xiuyun
    • Nuclear Engineering and Technology
    • /
    • 제50권8호
    • /
    • pp.1387-1401
    • /
    • 2018
  • An aircraft impact (AI) on a nuclear power plant (NPP) is considered to be a beyond-design-basis event that draws considerable attention in the nuclear field. As some NPPs have already adopted the seismic isolation technology, and there are relevant standards to guide the application of this technology in future NPPs, a new challenge is that nuclear power engineers have to determine a reasonable method for performing AI analysis of base-isolated NPPs. Hence, dynamic influences of the seismic isolation on the vibration and structural damage characteristics of the base-isolated CPR1000 containment are studied under various aircraft loads. Unlike the seismic case, the impact energy of AI is directly impacting on the superstructure. Under the coupled influence of the seismic isolation and the various AI load, the flexible isolation layer weakens the constraint function of the foundation on the superstructure, the results show that the seismic isolation bearings will produce a large horizontal deformation if the AI load is large enough, the acceleration response at the base-mat will also be significantly affected by the different horizontal stiffness of the isolation bearing. These concerns require consideration during the design of the seismic isolation system.

Innovative Design and Practice in Horizontal Skyscraper-ChongQing Raffles

  • Li-Gang, Zhu
    • 국제초고층학회논문집
    • /
    • 제11권3호
    • /
    • pp.197-205
    • /
    • 2022
  • One of important design challenges in Chongqing Raffles City Plaza project is Sky Bridge structural design and its connection scheme in high level. This article systematically describes the structural system and its design and analysis methodology, with discussing the impacts on structural performance due to different connection approaches. The seismic isolation scheme in high level is innovatively adopted to the final design. Under the conditions of various load cases, the different models and assumptions are implemented. A full assessment on Sky Bridge's structural performance, seismic isolation, and its connection is conducted in terms of seismic performance based design. By co-operating with architecture, MEP and other disciplines, the structural economy index is fulfilled.

원자력발전소 면진적용을 위한 기존 설계식의 적용성 검토 (Evaluation of the Applicability of Existing Design Formula for Seismic Isolation to Nuclear Power Plants)

  • 김현욱
    • 한국지진공학회논문집
    • /
    • 제16권6호
    • /
    • pp.29-36
    • /
    • 2012
  • Involved in a research for the application of seismic isolation to the nuclear industry, this study evaluates firstly the responses of seismic isolation system considering general ranges of structural period and damping ratio by using preliminary design formula. Secondly, coupling effects of input motions were evaluated to find out appropriate conditions of excitations and effect of the iteration for calculating yield displacement of lead core was also assessed in terms of response of a seismically isolated structure. Finally, the results of preliminary design calculation were compared with those of dynamic analysis and the propriety of the formula was evaluated and appropriate ranges of reduction factor were also suggested from the results.

기기면진 기반 원전 내진성능 상향 타당성 검토 (Feasibility Study for Seismic Performance Enhancement of NPP Based on Equipment Base Isolation)

  • 이진형;신태명;구경회
    • 한국압력기기공학회 논문집
    • /
    • 제14권2호
    • /
    • pp.88-95
    • /
    • 2018
  • In this study, to enhance the seismic performance of nuclear power plants (NPP), a small laminated rubber bearing (LRB) is chosen as a seismic design option of the vulnerable equipment. Prior to the application of equipment base isolation, it is necessary to review the feasibility that the technique contributes enough to the seismic performance of NPP by analysis. At first, some preliminary design of small LRBs for equipment is carried out. Design parameters such as horizontal and vertical stiffnesses, design natural frequencies are checked by calculation and analysis for the four design options considering various upper weights. Performance test of small LRB is to be carried out to verify static performance using the results.

Seismic responses of base-isolated buildings: efficacy of equivalent linear modeling under near-fault earthquakes

  • Alhan, Cenk;Ozgur, Murat
    • Smart Structures and Systems
    • /
    • 제15권6호
    • /
    • pp.1439-1461
    • /
    • 2015
  • Design criteria, modeling rules, and analysis principles of seismic isolation systems have already found place in important building codes and standards such as the Uniform Building Code and ASCE/SEI 7-05. Although real behaviors of isolation systems composed of high damping or lead rubber bearings are nonlinear, equivalent linear models can be obtained using effective stiffness and damping which makes use of linear seismic analysis methods for seismic-isolated buildings possible. However, equivalent linear modeling and analysis may lead to errors in seismic response terms of multi-story buildings and thus need to be assessed comprehensively. This study investigates the accuracy of equivalent linear modeling via numerical experiments conducted on generic five-story three dimensional seismic-isolated buildings. A wide range of nonlinear isolation systems with different characteristics and their equivalent linear counterparts are subjected to historical earthquakes and isolation system displacements, top floor accelerations, story drifts, base shears, and torsional base moments are compared. Relations between the accuracy of the estimates of peak structural responses from equivalent linear models and typical characteristics of nonlinear isolation systems including effective period, rigid-body mode period, effective viscous damping ratio, and post-yield to pre-yield stiffness ratio are established. Influence of biaxial interaction and plan eccentricity are also examined.