• Title/Summary/Keyword: Seismic design criteria

Search Result 231, Processing Time 0.025 seconds

Seismic Performance Evaluation of SRC Composite Column using Direct Displacement Based Design Method (직접변위기반 설계법에 의한 SRC 합성기둥의 내진성능평가)

  • Jung, In-Kju;Park, Soon-Eung;Kim, Dong-Hyuk
    • Journal of Korean Association for Spatial Structures
    • /
    • v.12 no.3
    • /
    • pp.63-70
    • /
    • 2012
  • In this study, the displacement-based design concept, the performance by the existing reinforced concerte column and steel reinforced concrete composite column for SRC purchased the maximum design ground acceleration improvement compared to the performance design. SRC have several advantages such as strength enhancement and high ductility. H-beam or steel tubes were used for embedded elements of the SRC composite columns. SRC cross-section for the P-M diagram and analysis on the nominal bending monent SRC designed for composite columns for disparity estimation is presented to the displacement-based seismic design. Performance improvement of the performance-based design performance targets for the design seismic displacement and design criteria for the direct displacement-based design methods and to improve the seismic performance due to the displacement coefficient method is proposed to design. SRC compared with the RC column designed to improve the performance and displacement ductility ratio displacement results in the performance design results showed significantly improved performance.

Estimation of the Isolator Displacement for the Performance Based Design of Nuclear Power Plants (원전 적용을 위한 면진장치의 성능기반 설계 변위 추정)

  • Kim, Jung Han;Choi, In-Kil;Kim, Min Kyu
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.18 no.6
    • /
    • pp.291-299
    • /
    • 2014
  • There has been an increasing demand for introducing a base isolation system to secure the seismic safety of a nuclear power plant. However, the design criteria and the safety assessment methodology of a base isolated nuclear facility are still being developed. A performance based design concept for the base isolation system needs to be added to the general seismic design procedures. For the base isolation system, the displacement responses of isolators excited by the extended design basis earthquake are important as well as the design displacement. The possible displacement response by the extended design basis earthquake should be limited less than the failure displacement of the isolator. The failure of isolators were investigated by an experimental test to define the ultimate strain level of rubber bearings. The uncertainty analysis, considering the variations of the mechanical properties of isolators and input ground motions, was performed to estimate the probabilistic distribution of the isolator displacement. The relationship of the displacement response by each ground motion level was compared in view of a period elongation and a reduction of damping. Finally, several examples of isolator parameters are calculated and the considerations for an acceptable isolation design is discussed.

Seismic Fragility Assessment for Korean High-Rise Non-Seismic RC Shear Wall Apartment Buildings (국내 고층 비내진 철근콘크리트 벽식 아파트의 지진취약도 평가)

  • Jeon, Seong-Ha;Shin, Dong-Hyun;Park, Ji-Hun
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.24 no.6
    • /
    • pp.293-303
    • /
    • 2020
  • Seismic fragility was assessed for non-seismic reinforced concrete shear walls in Korean high-rise apartment buildings in order to implement an earthquake damage prediction system. Seismic hazard was defined with an earthquake scenario, in which ground motion intensity was varied with respect to prescribed seismic center distances given an earthquake magnitude. Ground motion response spectra were computed using Korean ground motion attenuation equations to match accelerograms. Seismic fragility functions were developed using nonlinear static and dynamic analysis for comparison. Differences in seismic fragility between damage state criteria including inter-story drifts and the performance of individual structural members were investigated. The analyzed building had an exceptionally long period for the fundamental mode in the longitudinal direction and corresponding contribution of higher modes because of a prominently insufficient wall quantity in such direction. The results showed that nonlinear static analyses based on a single mode tend to underestimate structural damage. Moreover, detailed assessments of structural members are recommended for seismic fragility assessment of a relatively low performance level such as collapse prevention. On the other hand, inter-story drift is a more appropriate criterion for a relatively high performance level such as immediate occupancy.

Seismic Analysis of 30/5 Ton Overhead Crane for 30MWTh Korea Multipurpose Research Reactor (KMRR) (다목적연구용 원자로의 30/5 톤 천정크레인에 대한 지진해석에 관한 연구)

  • Yoo, Bong;Suh, Ki-Suk;Chu, Yong-Sun;Hong, Sung-In
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 1991.10a
    • /
    • pp.111-114
    • /
    • 1991
  • The KMRR 4-wheel crane which has a span of 30.6m long shall be designed to maintain its structural integrity during and after seismic shocks. Horizontal and vertical FRS for OBE and SSE conditions at the crane support are after seismic shock. Horizontal and vertical FRS for analysis are 4% for OBE and 7% for SSE. The crane consists of girder, saddle main and auxiliary trolley, and necessaries. They are modeled as beam elements and lumped masses for the following 4 cases ; trolley at center of the crane with and without the rated load, trolley at end with and without the rated load. The static analysis as well as the linear dynamic analysis including frequency and response spectrum analysis are performed for the seismic qualification of the crane using the Finite Element Method. For the simplicity of the analysis, the decoupling criteria are considered for the crane rope and the crane supporting beams. The main sections of the crane are stiffened until the calculated stresses satisfy the allowable limits. The seismic resultant loads are used to design the seismic restraints of the saddle and the trolley to protect the clue from the seismic uplifting loads the study results have show that the seismic design of the KMRR crane is governed by the OBE condition. not by the SSE condition. This paper briefly describes the analysis procedure used in the seismic design of the KMRR crane, and summarizes the analysis results.

  • PDF

Performance-based wind design framework proposal for tall buildings

  • Alinejad, Hamidreza;Kang, Thomas H.K.;Jeong, Seung Yong
    • Wind and Structures
    • /
    • v.32 no.4
    • /
    • pp.283-292
    • /
    • 2021
  • Performance-based seismic design (PBSD) is currently used for retrofitting of older buildings and the design of new buildings. Whereas, application of performance-based design for wind load is still under development. The tendency has been in the codes to increase wind hazard based on recent recorded events. Since tall buildings are highly susceptible to wind load, necessity for developing a framework for performance-based wind design (PBWD) has intensified. Only a few guidelines such as ASCE (2019) provide information on using PBWD as an alternative for code prescriptive wind design. Though wind hazards, performance objectives, analysis techniques, and acceptance criteria are explained, no recommendations are provided for several aspects like how to select a proper level of wind hazard for each target performance criterion. This paper is an attempt to explain current design philosophy for wind and seismic loads and inherent connection between the components of PBSD for development of a framework for PBWD of tall buildings. Recognizing this connection, a framework for PBWD based on limits set for serviceability and strength is also proposed. Also, the potential for carrying out PBWD in line with ASCE 7-16 is investigated and proposed in this paper.

A performance based strategy for design of steel moment frames under blast loading

  • Ashkezari, Ghasem Dehghani
    • Earthquakes and Structures
    • /
    • v.15 no.2
    • /
    • pp.155-164
    • /
    • 2018
  • Design of structures subjected to blast loads are usually carried out through nonlinear inelastic dynamic analysis followed by imposing acceptance criteria specified in design codes. In addition to comprehensive aspects of inelastic dynamic analyses, particularly in analysis and design of structures subjected to transient loads, they inherently suffer from convergence and computational cost problems. In this research, a strategy is proposed for design of steel moment resisting frames under far range blast loads. This strategy is inspired from performance based seismic design concepts, which is here developed to blast design. For this purpose, an algorithm is presented to calculate the capacity modification factors of frame members in order to simplify design of these structures subjected to blast loading. The present method provides a simplified design procedure in which the linear dynamic analysis is preformed, instead of the time-consuming nonlinear dynamic analysis. Nonlinear and linear analyses are accomplished in order to establish this design procedure, and consequently the final design procedure is proposed as a strategy requiring only linear structural analysis, while acceptance criteria of nonlinear analysis is implicitly satisfied.

Effect of Seismic Design Details in Reinforced Concrete Beams on Blast-Resistance Performance (철근콘크리트 보의 내진 설계 상세가 폭발 저항 성능에 미치는 영향)

  • Kim, Kuk-Jae;Kim, Han-Soo
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.30 no.5
    • /
    • pp.427-434
    • /
    • 2017
  • Recently, awareness of the public about the explosion damage has increased due to the increased risk of terrorism. The criteria for blast-resistance design is not sufficient in Korea, it is necessary to develop blast-resistance design for the stability and safety of building by static analysis of current blast-resistance design. In addition, as the increase of earthquake occurrence necessitates the seismic design, it is studied to judge the blast-resistance performance of members applying seismic design without blast-resistance design. Currently, the general analysis of blast load is to refer to UFC 3-340-02 manual. Blast-resistance performance was studied by applying characteristics of blast load through UFC 3-340-02 manual, beam converted into equivalent SDOF System. It is proved that blast-resistance performance is improved when seismic detail is applied considering the maximum deflection of normal, intermediate, and special moment frames.

Simplified elastic-plastic analysis procedure for strain-based fatigue assessment of nuclear safety class 1 components under severe seismic loads

  • Kim, Jong-Sung;Kim, Jun-Young
    • Nuclear Engineering and Technology
    • /
    • v.52 no.12
    • /
    • pp.2918-2927
    • /
    • 2020
  • This paper proposes a simplified elastic-plastic analysis procedure using the penalty factors presented in the Code Case N-779 for strain-based fatigue assessment of nuclear safety class 1 components under severe seismic loads such as safety shutdown earthquake and beyond design-basis earthquake. First, a simplified elastic-plastic analysis procedure for strain-based fatigue assessment of nuclear safety class 1 components under the severe seismic loads was proposed based on the analysis result for the simplified elastic-plastic analysis procedure in the Code Case N-779 and the stress categories corresponding to normal operation and seismic loads. Second, total strain amplitude was calculated directly by performing finite element cyclic elastic-plastic seismic analysis for a hot leg nozzle in pressurizer surge line subject to combined loading including deadweight, pressure, seismic inertia load, and seismic anchor motion, as well as was derived indirectly by applying the proposed analysis procedure to the finite element elastic stress analysis result for each load. Third, strain-based fatigue assessment was implemented by applying the strain-based fatigue acceptance criteria in the ASME B&PV Code, Sec. III, Subsec. NB, Article NB-3200 and by using the total strain amplitude values calculated. Last, the total strain amplitude and the fatigue assessment result corresponding to the simplified elastic-plastic analysis were compared with those using the finite element elastic-plastic seismic analysis results. As a result of the comparison, it was identified that the proposed analysis procedure can derive reasonable and conservative results.

Study on the Seismic Analysis of the Reactor Vessel Internals (원자로내부구조물의 지진해석에 관한 연구)

  • Jhung, Myung-Jo;Park, Keun-Bae;Hwang, Won-Gul
    • Nuclear Engineering and Technology
    • /
    • v.25 no.1
    • /
    • pp.28-36
    • /
    • 1993
  • Much effort is being done to standardize the PWR-type nuclear power plant in Korea. This paper presents the development of seismic design criteria for the reactor internals as a part of the standardization program for nuclear power plant. The seismic design loads of the reactor internals are calculated using the reference input motions of reactor vessel taken from Yong-gwang Nuclear Power Plant Units 3 and 4. An overview of analysis related to the basic parameters and methodologies is presented. Also, the response of internal components for the reactor vessel motions is carefully investigated.

  • PDF

Comparative Study on Seismic Design of Soil-Reinforced Segmental Retaining Walls (블록식 보강토 옹벽의 내진설계에 관한 비교연구)

  • 유충식
    • Journal of the Korean Geotechnical Society
    • /
    • v.16 no.4
    • /
    • pp.51-61
    • /
    • 2000
  • This paper reviews fundamentals of a pseudo-static seismic design/analysis method for soil-reinforced segmental retaining walls. A comparative study on NCMA and FHWA seismic design guidelines, which are one of the most well known design guidelines for mechanically stabilized earth walls, was also performed. The results demonstrate that there exist significant discrepancies in the results of external stability analysis despite the same calculation model used in the two guidelines, due primarily to different seismic coefficient selection criteria. It is also demonstrated that the internal stability calculation model for NCMA guideline tends to yield larger seismic reinforcement force in the shallower reinforcement layers, resulting in an increased number of reinforcement layers at the top of reinforced wall and increased reinforcement lengths to ensure adequate anchorage capacity. The internal stability calculation model adopted by FHWA guideline, however, leads to redistribution of dynamic force to the lower reinforcement layers and thus results n an opposite trend of NCMA guideline. Findings from this study clearly demonstrate a need for more in-depth studies to develop a generally acceptable design/analysis method.

  • PDF