• Title/Summary/Keyword: Seismic characteristics evaluation

Search Result 247, Processing Time 0.031 seconds

Seismic Performance of Precast Beam-Column Joints with Thru-Connectors (관통형 연결재로 연결된 PC 보-기둥 맞댐 접합의 내진성능에 관한 실험적 연구)

  • Park, Seok-June;Park, Soon-Kyu
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2010.05a
    • /
    • pp.83-84
    • /
    • 2010
  • Precast beam column joints with thru-connectors are developed from precedent study. The seismic performance is evaluated by experimental method. The test results of the precedent study showed that failure modes for all specimens were a compression failure by characteristics of unbonded tendon. Thus, variable considered in the research program for a tensile failure include the use of dog-boned longitudinal steel and concrete confined with steel spirals. The analysis of structural characteristics and evaluation of seismic performance of specimens was conducted by the experimental way. Comparison of result with the test specimens indicates that seismic performance is higher than the precedent study due to concrete confinement effect from steel spirals.

  • PDF

Experimental Study on the Seismic Response Characteristics of a Traditional Three-bay-straw-roof House (전통 초가삼간 가옥의 지진응답특성 실험)

  • 서정문
    • Proceedings of the Earthquake Engineering Society of Korea Conference
    • /
    • 1997.10a
    • /
    • pp.185-192
    • /
    • 1997
  • Many uncertainties are found in the evaluation of historical eatrhquake records. The seismic response characteristics of a three-bay-straw-roof house which is a typical from of residence in ancient period is quantitatively estimated. Two 1:4 scaled models are used in the test Real earthquake time histories for rock and competent soil conditions are used.

  • PDF

A Case Study on the Seismic Hazard Classification of Domestic Drinking Water Earthfill Dams Using Zero Seismic Failure Probability Curve (지진파괴확률 영곡선 활용 국내 식수전용 흙댐의 지진 위험도 분류 사례 연구)

  • Ha, Ik-soo
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.26 no.4
    • /
    • pp.173-180
    • /
    • 2022
  • Most of the drinking water dams managed by the local governments in Korea are earthfill dams, and these dams have almost no geotechnical property information necessary for seismic performance evaluation. Nevertheless, in the rough planning stage for improving seismic safety for these dams, it is necessary to classify their relative seismic hazard against earthquakes and conduct an additional ground investigation. The zero seismic failure probability curve is a curve suggested in this study in which the probability of failure due to an earthquake becomes '0' regardless of the geotechnical properties of the earthfill dam. By examining the method and procedure for calculating failure probability due to an earthquake suggested in previous researches, the zero seismic failure probability curves for an earthquake in 1,000-year and 2,400-year return periods in Korea were presented in the form of a hyperbola on the plane of the dam height versus freeboard ratio (ratio of freeboard to dam height), respectively. The distribution characteristics of the dam height and the freeboard ratio of 81 Korean earthfill dams were presented. The two proposed zero seismic failure probability curves are shown on the plane of the dam height versus freeboard ratio, and the relative seismic hazard of 81 dams can be classified into three groups using these curves as boundaries. This study presented the method of classifying the relative seismic hazard and the classification result.

A Study on the Seismic Resistance of Fill-dams by Newmark-type Deformation Analysis (Newmark 기반 변형해석에 의한 필댐의 내진저항성 연구)

  • Park, Dong Soon
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.18 no.4
    • /
    • pp.161-170
    • /
    • 2014
  • Newmark-type deformation analysis has rarely been done in Korea due to the popularity of simple pseudo-static limit equilibrium analysis and detailed time-history FE/FD dynamic analysis. However, the Korean seismic dam design code updated in 2011 prescribes Newmark-type deformation analysis as a major dynamic analysis method for the seismic evaluation of fill dams. In addition, a design PGA for dynamic analysis is significantly increased in the code. This paper aims to study the seismic evaluation of four existing large fill dams through advanced FEM/Newmark-type deformation analyses for the artificial earthquake time histories with the design PGA of 0.22g. Dynamic soil properties obtained from in-situ geo-physical surveys are applied as input parameters. For the FEM/Newmark analyses, sensitivity analyses are performed to study the effects of input PGA and $G_{max}$ of shell zone on the Newmark deformation. As a result, in terms of deformation, four fill dams are proved to be reasonably safe under the PGA of 0.22g with yield coefficients of 0.136 to 0.187, which are highly resistant for extreme events. Sensitivity analysis as a function of PGA shows that $PGA_{30cm}$ (a limiting PGA to cause the 30 cm of Newmark permanent displacement on the critical slip surface) is a good indicator for seismic safety check. CFRD shows a higher seismic resistance than ECRD. Another sensitivity analysis shows that $G_{max}$ per depth does not significantly affect the site response characteristics, however lower $G_{max}$ profile causes larger Newmark deformation. Through this study, it is proved that the amplification of ground motion within the sliding mass and the location of critical slip surface are the dominant factors governing permanent displacements.

Seismic Damage Index Proposal and Damage Assessment for Cable-Stayed Bridge (사장교의 내진 손상지수의 제안 및 손상도 평가)

  • Kim, Eung-Rok
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.19 no.1
    • /
    • pp.127-135
    • /
    • 2018
  • With the nation showing increasing concern for earthquakes, there have been several methods for the analysis of earthquakes and evaluation of damage. Nevertheless, there is no clear standard to assess the seismic damage to structures quantitatively. Accordingly, this study conducted seismic analysis of several forms of seismic waves and actual seismic load, targeting the cable stayed bridge, which is supported by a cable and proposes a method for evaluating the damage based on the results. The damage index was calculated based on the tilting of the pylon of the cable-stayed bridge and the characteristics of physical seismic damage was suggested with 4 levels, such as A, B, C, and D. In addition, it is not proper to simply judge that the seismic damage index is obtained as large or small at all times depending on the seismic analysis method. Although this study focused on the proposal seismic damage index and an evaluation of the damage targeting the cable stayed bridge, the result was applied to a structure with a similar maximum displacement response.

Comparison of the seismic performance of existing RC buildings designed to different codes

  • Zeris, Christos A.;Repapis, Constantinos C.
    • Earthquakes and Structures
    • /
    • v.14 no.6
    • /
    • pp.505-523
    • /
    • 2018
  • Static pushover analyses of typical existing reinforced concrete frames, designed according to the previous generations of design codes in Greece, have established these structures' inelastic characteristics, namely overstrength, global ductility capacity and available behaviour factor q, under planar response. These were compared with the corresponding demands at the collapse limit state target performance point. The building stock considered accounted for the typical variability, among different generations of constructed buildings in Greece, in the form, the seismic design code in effect and the material characteristics. These static pushover analyses are extended, in the present study, in the time history domain. Consequently, the static analysis predictions are compared with Incremental Dynamic Analysis results herein, using a large number of spectrum compatible recorded base excitations of recent destructive earthquakes in Greece and abroad, following, for comparison, similar conventional limiting failure criteria as before. It is shown that the buildings constructed in the 70s exhibit the least desirable behaviour, followed by the buildings constructed in the 60s. As the seismic codes evolved, there is a notable improvement for buildings of the 80s, when the seismic code introduced end member confinement and the requirement for a joint capacity criterion. Finally, buildings of the 90s, designed to modern codes exhibit an exceptionally good performance, as expected by the compliance of this code to currently enforced seismic provisions worldwide.

Evaluation of vibration characteristics according to changes in the fixing conditions of the electrical cabinet in power plants under an earthquake

  • Lee, Sang-Moon;Jeon, Bub-Gyu;Jung, Woo-Young
    • Earthquakes and Structures
    • /
    • v.23 no.3
    • /
    • pp.245-257
    • /
    • 2022
  • This study is a basic study on the seismic reinforcement method of anchors of fixed parts in order to reduce the effect of seismic motion that affects the facilities in the event of an earthquake. By applying the test method of ICC ES AC 156, a seismic simulation experiment was performed on the vibration table with three axes simultaneously using the number of connecting bolts between cabinets and channels as a parameter. In addition, the reliability of the experiment was verified using numerical analysis, and the part about the dynamic characteristics that could not be performed according to the experimental limit was investigated through numerical analysis. As a result of the experiment, it was confirmed that the natural frequency of the main body was increased due to the increase in the number of connecting bolts between the cabinet-channel. Accordingly, it was judged that the rigidity of the lower part of the cabinet was increased due to seismic reinforcement. It was analyzed that the impact delivered to the body was effectively reduced. In the future, if the reinforcement of the connection parts mentioned in this study is added to the existing seismic reinforcement of the electrical cabinets, it is expected that the damage to the electrical cabinets of the power plant equipment caused by an earthquake will be effectively reduced.

Seismic Fragility Analysis based on Material Uncertainties of I-Shape Curved Steel Girder Bridge under Gyeongju Earthquake (강재 재료 불확실성을 고려한 I형 곡선 거더 교량의 경주 지진 기반 지진 취약도 분석)

  • Jeon, Juntai;Ju, Bu-Seog;Son, Ho-Young
    • Journal of the Society of Disaster Information
    • /
    • v.17 no.4
    • /
    • pp.747-754
    • /
    • 2021
  • Purpose: Seismic safety evaluation of a curved bridge must be performed since the curved bridges exhibit the complex behavior rather than the straight bridges, due to geometrical characteristics. In order to conduct the probabilistic seismic assessment of the curved bridge, Seismic fragility evaluation was performed using the uncertainty of the steel material properties of a curved bridge girde, in this study. Method: The finite element (FE) model using ABAQUS platform of the curved bridge girder was constructed, and the statistical parameters of steel materials presented in previous studies were used. 100 steel material models were sampled using the Latin Hypercube Sampling method. As an input ground motion in this study, seismic fragility evaluation was performed by the normalized scale of the Gyeongju earthquake to 0.2g, 0.5g, 0.8g, 1.2g, and 1.5g. Result: As a result of the seismic fragility evaluation of the curved girder, it was found that there was no failure up to 0.03g corresponding to the limit state of allowable stress design, but the failure was started from 0.11g associated with using limit state design. Conclusion: In this study, seismic fragility evaluation was performed considering steel materials uncertainties. Further it must be considered the seismic fragility of the curved bridge using both the uncertainties of input motions and material properties.

Seismic response evaluation of 154 kV transformer porcelain bushing by shaking table tests

  • Chun, Nakhyun;Jeon, Bubgyu;Kim, Sungwan;Chang, Sungjin;Son, Suwon
    • Structural Engineering and Mechanics
    • /
    • v.84 no.2
    • /
    • pp.155-165
    • /
    • 2022
  • The use of electricity and communication between electronic devices is increasing daily, which makes the stability of electrical power supply vital. Since the 1990s, large earthquakes have occurred frequently causing considerable direct damage to electrical power facilities as well as secondary damage, such as difficulty in restoring functions due to the interruption of electric power supply. Therefore, it is very important to establish measures to protect electrical power facilities, such as transformers and switchboards, from earthquakes. In this study, a 154 kV transformer whose service life had expired was installed on the base fabricated by simulating the field conditions and conducting the shaking table tests. The dynamic characteristics and seismic behavior of the 154 kV transformer were analyzed through the resonance frequency search test and seismic simulation test that considers the front, rear, left, and right directions. Since the purpose of this study is to analyze the acceleration amplification in the bushing due to the acceleration amplification, the experimental results were analyzed focusing on the acceleration response and the converted acceleration amplification ratio rather than the failure due to the displacement response of the transformer. The seismic force amplification at the transformer bushing was evaluated by simulating the characteristics of electrical power facilities in South Korea, and compared with the IEC TS 61463 acceleration amplification factor. Finally, the amplification factor at zero period acceleration (ZPA) modified for each return period was summarized. The results of this study can be used as data to define the amplification factor at ZPA of the transformer bushing, simulating the characteristics of electrical power facilities in Korea.

Dynamic Property Evaluation of Control Equipment using Lead Rubber Bearing (납-고무베어링을 적용한 제어장비의 동적 특성평가)

  • 이경진;김갑순;서용표
    • Proceedings of the Earthquake Engineering Society of Korea Conference
    • /
    • 2002.09a
    • /
    • pp.341-348
    • /
    • 2002
  • In these days, The base isolation system is often used to improve the seismic capacity of the structures instead of conventional techniques of strengthening the structural members. The purpose of this study is to evaluate dynamic property evaluation of control equipment using lead Lead Rubber Bearing. In this study, a base isolation test of seismic monitoring control cabinet with LRB(lead rubber bearing) was performed. The cabinet will be installed on access floor in MCR(main control room) of nuclear power plant. Details and dynamic characteristics of the access floor were considered in the construction of testing specimen. N-S component of El Centre earthquake was used as seismic input motion. Acceleration response spectrums in the top of cabinets showed that the first mode frequency of cabinet with LRB(lead rubber bearing) was shifted to 7.5 Hz in compared with 18Hz of cabinet without LRB and the maximum peak acceleration was reduced in a degree of22 percent from 2.35 g to 1.84 g

  • PDF