• Title/Summary/Keyword: Seismic characteristics

Search Result 1,435, Processing Time 0.024 seconds

Assessment of Input Motion for the Seismic Analysis of Nuclear Structures (원자력구조물(原子力構造物)의 지진해석(地震解析)에 사용(使用)되는 입력운동(入力運動)에 대한 고찰(考察))

  • Park, Hyung Ghee;Yu, Chul Soo
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.5 no.2
    • /
    • pp.91-99
    • /
    • 1985
  • The acceleration levels and durations of seismic inputs for nuclear power plant design are surveyed. Among those inputs, two artificial acceleration time histories with same acceleration level and duration are selected and their characteristics are studied by calculating response spectra and spectrum intensity. The selected time histories which have the duration of 24 sec. satisfy the design response spectra of US Nuclear Regulatory Commission Regulatory Guide 1. 60. One of the selected time histories is improved to have the duration of 15 sec. without significant changes in the other characteristics. A case study of a plane model with 3 lumped masses is done using three time histories, i.e, two selected and one improved time histories. It is found that the improved curve gives almost the same results as the original one and reduces the computer time by about half, whereas two selected time histories give the results with same trend but much different magnitudes each other. It is claimed, however, that the improved time history is not the optimal one, but very economical in practical applications.

  • PDF

Development of Site Classification System and Modification of Design Response Spectra considering Geotechnical Site Characteristics in Korea (II) - Development of Site Classification System (국내 지반특성에 적합한 지반분류 방법 및 설계응답스펙트럼 개선에 대한 연구 (II) - 지반분류 개선방법)

  • Yoon, Jong-Ku;Kim, Dong-Soo;Bang, Eun-Seok
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.10 no.2 s.48
    • /
    • pp.51-62
    • /
    • 2006
  • In the companion paper (I-Problem Statements of the Current Seismic Design Code), the current Korean seismic design code is required to be modified considering site characteristics in Korea for the reliable estimation of site amplification. In this paper, three site classification methods based on the mean shear wave velocity of the top 30m $V_{S30}$, fundamental site periods $(T_G)$ and bedrock depth were investigated and compared with each other to determine the best classification system. Not enough of a difference in the standard deviation of site coefficients $(F_a\;and\;F_v)$ to determine the best system, and neither is the difference between the average spectral accelerations and the design response spectrum of each system. However, the amplification range of RRS values based on $T_G$ were definitely concentrated on a narrow band than other classification system. It means that sites which have a similar behavior during earthquake will be classified as the same site category at the site classification system based on $T_G$. The regression curves between site coefficients and $T_G$ described the effect of soil non linearity well as the rock shaking intensity increases than the current method based on $V_{S30}$. Furthermore, it is unambiguous to determine sue category based on $T_G$ when the site investigation is performed to shallower depth less than 30m, whereas the current $V_{S30}$ is usually calculated fallaciously by extrapolating the $V_s$ of bedrock to 30m. From the results of this study, new site classification system based on $T_G$ was recommended for legions of shallow bedrock depth in Korea.

A Study on the Applicability of Arias Intensity Liquefaction Assessment (Arias Intensity 액상화 평가기법의 적용성에 관한 연구)

  • Hwang, Jungtae;Lee, Jongkeun;Shin, Eunchul
    • Journal of the Korean GEO-environmental Society
    • /
    • v.14 no.6
    • /
    • pp.13-19
    • /
    • 2013
  • In this study, the target ground was selected for the assessment of liquefaction, for which energy-based Arias intensity liquefaction assessment method was applied, The results of evaluation by simplified method using conventional in-situ test were compared. The result of the assessment of liquefaction revealed that the safety factor of the Arias Intensity using the actual records of the Hachinohe and Ofunato earthquake showed generally similar trends with the simplified method, However, the Arias Intensity factor of safety for the artificial earthquake created from the design response spectrum showed some difference from the factors of safety of the simplified method. The shear stress ratio and the occurrence strength of the Arias Intensity are differently calculated between stress and energy, but the resistance stress ratio of the simplified method and the resistance strength of the Arias Intensity use the empirical chart of the results of the standard penetration test for the actual liquefaction areas by the earthquake, which seems the reason for the similar results between Arias Intensity assessment and stress concept simplified method for Hachinohe and Ofunato earthquakes. Therefore, it was found that the energy-based Arias Intensity liquefaction assessment could represent the dynamic changes of the ground caused by seismic characteristics such as acceleration, magnitude, duration and amplitude.

GEOPHYSICAL EXPLORATION FOR THE SITE CHARACTERISTICS OF THE WESTERN THREE-STORY STONE PAGODA IN GAMEUM TEMPLE ( 감은사지 3층석탑(서탑)의 지반 특성을 위한 지구물리탐사)

  • Seo,Man-Cheol;Choe,Hui-Su;Lee,Chan-Hui;O,Jin-Yong
    • Journal of the Korean Geophysical Society
    • /
    • v.6 no.1
    • /
    • pp.39-46
    • /
    • 2003
  • Twin stone pagodas of the ruins of Kamunsa temple at Kyongju city, Kyungsangbukdo were believed to be built in 682 during the Unified Shilla Kingdom. The 13.4-m-high granodiolite pagodas with the base of 6.78 m x 4.4 m are the largest three-story stone pagoda in Korea. The western pagoda which was re-organized in 1959 is observed to be on the process of severe weathering. Also, some stone contacts are represented by the shape of sharp chevron, which is probably caused by the uneven loading due to the structural unbalance. For the structure-safety diagnosis of the western pagoda, it is necessary to understand its site characteristics and surrounding subsurface environment. Combined geophysical survey such as seismic and resistivity methods was carried out around the western pagoda. The range of 55∼350 Ωm is shown around the pagoda from the electrical resistivity mapping by the Wenner method. The higher resistivities occur the southwestern area, while the lower (<100 Ωm) values indicating the weaker subsurface appear to be on the northeastern area. This result coincides with the measurement of a leaning angle of the pagoda. Along 6 seismic lines, about 3-m-thick uppermost section around the pagoda shows the P-wave velocity of 200∼700 m/s from the refraction survey. Based on the integrated geophysical survey, the foundation of the pagoda is estimated to be in the form of 11-m-side square down to the depth of 3 m.

  • PDF

A proposal of marine geophysical exploration techniques for offshore plant installation (해양플랜트 설치를 위한 해양물리탐사 기법 제안)

  • Ha, Ji-Ho;Ko, Hwi-Kyung;Cho, Hyen-Suk;Chung, Woo-Keen;Ahn, Dang;Shin, Sung-Ryul
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.37 no.2
    • /
    • pp.242-251
    • /
    • 2013
  • Recently, while global concern over offshore resources exploration and development is being increased rapidly, offshore plant industry is highlighted as an industry of high added value. Along with this global trend, domestic concern over offshore plant development is being increased as well. In the overseas case, a marine geotechnical survey guideline for confirming characteristics of seabed sediments is available at the time of installation of offshore plant but such guideline is not available in our country. In this study, survey techniques fit for domestic marine environment was applied according to overseas guideline at southern coastal area, Korea. Among the marine geophysical survey techniques being proposed abroad, magnetic survey and seabed photograph were excluded. However, highly reliable data analysis was enabled for marine geophysical survey, which includes in-situ coring investigation and laboratory soil test. In addition, continuous ocean current survey was included to find scour potential due to the current around the offshore plant. Although coring depth is not so deep, we predicted geological structure through the analysis of amplitude features of seismic data. Characteristics of seabed sediments cold be obtained regionally and directly through combined analysis of marine geophysical survey data and coring data.

Seismic Evidence and Characteristics of Gas Hydrate in the Ulleung Basin (탄성파 자료에서 나타난 울릉분지내 가스수화물의 증거와 특성)

  • Kim, Han-Joon;Jou, Hyeong-Tae;Koo, Nam-Hyeong;Yoo, Dong-G.;Suk, Bong-Chool;Yoo, Hai-Soo;Lee, Ho-Young;Park, Keun-Pil
    • Geophysics and Geophysical Exploration
    • /
    • v.11 no.2
    • /
    • pp.148-152
    • /
    • 2008
  • Multichannel seismic profiles reveal a strong bottom simulating reflector (BSR) occurring below the seafloor in the plain of the Ulleung Basin, East Sea (Japan Sea). The essential characteristics of the BSR include its cross-cutting relationship to strata, strong amplitude, and reverse polarity with respect to the seafloor reflection, representing the base of the gas hydrate stability zone (BHSZ). The BSR reflection coefficient ranging from -0.23 to -0.26 is 1.5${\sim}$1.7 times that of the seafloor reflection and interval velocities decrease to less than 700 m/s below the BSR. These features indicate the existence of free gas beneath the GHSZ. Heat flow, estimated from the BSR depth as $95{\sim}98mW/m^2$, is in good agreement with measured values. Therefore, the BSR can be efficiently used to estimate regional distribution of heat flow in the Ulleung Basin.

Case Study about the Ground Characteristics Analysis of Tunnel Face Fault Fractured Zone (터널막장 단층파쇄대의 지반특성 분석에 대한 사례연구)

  • Min Kyoung-Nam;Lim Kwang-Su;Jang Chang-Sik;Lim Dae-Hwan
    • Tunnel and Underground Space
    • /
    • v.15 no.2 s.55
    • /
    • pp.111-118
    • /
    • 2005
  • The area of investigation belongs to Okchon metamorphic zone and the fault fractured zone runs parallel to the tunnel direction. It causes the independent decline of tunnel face and the slackness of the tunnel surrounding base so, after all, the severe displacement has occurred within the tunnel. Accordingly, the TSP(Tunnel Seismic Prediction) survey has been performed to investigate the extent of fault fractured zone and to analize its characteristics. Also, we have analized the behavior causes by performing the tunnel face mapping and drilling investigation, and confirmed the position and scale of geological anomaly area and front fractured zone which influences tunnel excavation and supporting. Collected data analyzed ground layer condition through 3 dimensional modeling. Several variables included in the modeling were analyzed by geostastistics. The analysis of the modeling data shows that the belt of weathering by fault fractured zone is developing on the basis of the right side of tunnel and that is decreasing to the left side. The fault fractured zone was confirmed that it has strike, $N0\~5^{\circ}E$ dip NW, and it is consisted of large-scale fractured zone including several anomalies. The severe displacement in tunnel is probably caused by asymmetrical load that n generated by the crossing of discontinuity and the rock strength imbalance of tunnel's both side by fault fractured zone, and judge that need tunnel reinforcement method of grouting etc.

Analysis of Characteristics of Horizontal Response Spectrum of Ground Motions from 19 Earthquakes (국내 관측자료를 이용한 수평 응답스펙트럼 특성 분석)

  • Kim, Jun-Kyoung
    • Tunnel and Underground Space
    • /
    • v.20 no.6
    • /
    • pp.399-407
    • /
    • 2010
  • The horizontal response spectra using the observed ground motions from the recent more than 19 macro earthquakes were analysed and then were compared to both the seismic design response spectra (Reg Guide 1.60), applied to the domestic nuclear power plants, and the Korean Standard Design Response Spectrum for general structures and buildings (1997). 130 horizontal ground motions, without considering soil types, were used for normalization with respect to the peak acceleration value of each ground motion. The results showed that response spectrum have strong dependency on epicentral distance. The results also showed that the horizontal response spectra revealed much higher values for frequency bands above 5 Hz than Reg. Guide (1.60). The results were also compared to the Korean Standard Response Spectrum for the 3 different soil types and showed that the vertical response spectra revealed much higher values for the frequency bands below 0.3 second than the Korean Standard Response Spectrum (SD soil condition). These spectral values dependent on frequency could be related to characteristics of the domestic crustal attenuation and the effect of each site amplification. However, through the qualitative improvements and quantitative enhancement of the observed ground motions, the conservation of horizontal seismic design response spectrum should be considered more significantly for the frequency bands above 5 Hz.

Characteristics of Vertical/Horizontal Ratio of Response Spectrum from Domestic Ground Motions (국내 관측자료를 이용한 응답스펙트럼의 수직/수평비 특성 분석)

  • Kim, Junkyoung
    • Journal of the Korean GEO-environmental Society
    • /
    • v.12 no.1
    • /
    • pp.81-87
    • /
    • 2011
  • The characteristics of vertical to horizontal ratio of response spectrum from 20 recent earthquakes were analysed. Response spectrum of 260 horizontal and 130 vertical ground motions were normalized by peak ground acceleration at each resonance frequency from 0.1 to 50Hz. It has been identified that the ratio of vertical to horizontal response spectrum has strong dependancy on epicentral distance and resonance frequency. The ratio of vertical to horizontal response spectrum for the 0-50km epicentral distance group are larger than 2/3 values, which is a standard engineering rule-of-thumb V/H=2/3, at resonance frequency above 7-8Hz. All the 3 groups such as 50-100, 100-150- and 150-200km epicentral distance have shown larger values of vertical to horizontal ratio than 2/3 at resonance frequency above 15Hz and also are larger than 2/3 at resonance frequency below 8-10Hz. Even though there are differences in specific resonance frequency values which depend on the epicentral distance group, we should be careful of seismic design of vertical component of the structures winch are located within the range of about 200km distance. form the potentially seismic causative faults.

Modification of SPT-Uphole Method using Two Component Surface Geophones (2방향 지표면 속도계를 활용한 SPT-업홀 기법 개선 연구)

  • Bang, Eun-Seok;Kim, Jong-Tae;Kim, Dong-Soo
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.26 no.2C
    • /
    • pp.109-120
    • /
    • 2006
  • SPT-Uphole test is a seismic field test using receivers on ground surface and a SPT (Standard penetration test) source in depth. Even though this method is simple and economic, it makes hesitate to apply in real field that it is difficult to obtain reliable travel time information of shear wave because of the characteristics of SPT impact source. To overcome this shortcoming, in this paper, modified SPT-Uphole method using two component surface geophones was suggested. Numerical analysis was performed using finite element method for understanding the characteristics of surface motion induced by in-depth vertical source, and comparison study of the various methods which determine the travel time information in SPT-Uphole method was performed. In result, it is thought that the most reasonable method is using the first local maximum point of the root mean square value signals of vertical and horizontal component in time domain. Finally, modified SPT-Uphole method using two component surface geophones was performed at the site, and the applicability in field was verified by comparing wave velocity profiles determined by the SPT-Uphole method with the profiles determined by SASW method and SPT-N values.