• Title/Summary/Keyword: Seismic characteristics

Search Result 1,439, Processing Time 0.027 seconds

Seismic Behaviors of Concrete-Suction-Type Offshore Wind Turbine Supporting Structures Considering Soil-Structure Interaction (지반-구조물 상호작용을 고려한 콘크리트 석션식 해상풍력 지지구조물의 지진거동 특성)

  • Lee, Jin Ho;Jin, Byeong-Moo;Bae, Kyung-Tae
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.30 no.4
    • /
    • pp.319-327
    • /
    • 2017
  • In this study, characteristics of seismic behaviors of offshore wind turbine systems using concrete-suction-type supporting structures are investigated. Applying hydrodynamic pressure from the surrounding sea water and interaction forces from the underlying soil to the structural system which is composed of RNA, the tower, and the supporting structure, a governing equation of the system is derived and its earthquake responses are obtained. It can be observed from the analysis results that the responses are significantly influenced by soil-structure interaction because dynamic responses for higher natural vibration modes are increased due to the flexibility of soil. Therefore, the soil-structure interaction must be taken into consideration for accurate assessment of dynamic behaviors of offshore wind turbine systems using concrete-suction-type supporting structures.

Attenuation Relations in HAZUS for Earthquake Loss Estimations in Korea (한반도 지진재해예측을 위한 HAZUS의 강진동 감쇠식 비교연구)

  • Kang, Su-Young;Suk, Bong-Chool;Yoo, Hai-Soo;Kim, Kwang-Hee
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.11 no.6
    • /
    • pp.15-21
    • /
    • 2007
  • Strong motion attenuation relationship represents a comprehensive trend of ground shakings at sites with distances from the source, geology, local soil conditions, and others. It is necessary to develop an attenuation relationship with careful considerations of characteristics of the target area for reliable seismic hazard/risk assessments. In the study, observed ground motions from the January 2007 magnitude 4.9 Odaesan earthquake and the events occurring in the Gyeongsang provinces are compared with the previously proposed ground attenuation relationships in the Korean Peninsula to select most appropriate one. In the meantime, a few strong ground motion attenuation relationships are proposed and introduced in HAZUS, which have been designed for the Western United States and the Central and Eastern United States. The selected relationship from the ones for the Korean Peninsula has been compared with attenuation relationships available in HAZUS. Results of the study will increase the reliability of seismic hazard/risk assessments using HAZUS in the Korean Peninsula.

EVALUATION OF SEISMIC SHEAR CAPACITY OF PRESTRESSED CONCRETE CONTAINMENT VESSELS WITH FIBER REINFORCEMENT

  • CHOUN, YOUNG-SUN;PARK, JUNHEE
    • Nuclear Engineering and Technology
    • /
    • v.47 no.6
    • /
    • pp.756-765
    • /
    • 2015
  • Background: Fibers have been used in cement mixture to improve its toughness, ductility, and tensile strength, and to enhance the cracking and deformation characteristics of concrete structural members. The addition of fibers into conventional reinforced concrete can enhance the structural and functional performances of safety-related concrete structures in nuclear power plants. Methods: The effects of steel and polyamide fibers on the shear resisting capacity of a prestressed concrete containment vessel (PCCV) were investigated in this study. For a comparative evaluation between the shear performances of structural walls constructed with conventional concrete, steel fiber reinforced concrete, and polyamide fiber reinforced concrete, cyclic tests for wall specimens were conducted and hysteretic models were derived. Results: The shear resisting capacity of a PCCV constructed with fiber reinforced concrete can be improved considerably. When steel fiber reinforced concrete contains hooked steel fibers in a volume fraction of 1.0%, the maximum lateral displacement of a PCCV can be improved by > 50%, in comparison with that of a conventional PCCV. When polyamide fiber reinforced concrete contains polyamide fibers in a volume fraction of 1.5%, the maximum lateral displacement of a PCCV can be enhanced by ~40%. In particular, the energy dissipation capacity in a fiber reinforced PCCV can be enhanced by > 200%. Conclusion: The addition of fibers into conventional concrete increases the ductility and energy dissipation of wall structures significantly. Fibers can be effectively used to improve the structural performance of a PCCV subjected to strong ground motions. Steel fibers are more effective in enhancing the shear performance of a PCCV than polyamide fibers.

Reversed Cyclic Latcral Load Test of A 2-Bay 2-Story Reinforced Concrete Frame With Seismic Detail (내진상세를 가진 2경간 2층 철근콘크리트 골조의 반복횡하중 실험)

  • Lee, Han-Seon;Woo, Sung-Woo
    • Magazine of the Korea Concrete Institute
    • /
    • v.8 no.6
    • /
    • pp.183-193
    • /
    • 1996
  • The objective of this study is to investigate the characteristics of elastic and inelastic bekavior of ductile momenting-resisting reinforced concrete frame subjected to reversed lateral loading such as earthquake excitations. For this purpose, a 2-bay 2-story reinforced concrete plane frame with seismic detail was designed and one 1/2.5-scale subassemblage was manufactured according to the required similitude law. Then, the reversed load test under the displacement control was performed statically to this subassemblage. Finally, the results of this test were analysed regarding to (1) the design load vs actual strength, (2) degradation in stiffness and strength. (3) failure mode or energy dissipation. (4) local deformations.

Multi-objective Optimal Design using Genetic Algorithm for Semi-active Fuzzy Control of Adjacent Buildings (인접건물의 준능동 퍼지제어를 위한 유전자알고리즘 기반 다목적 최적설계)

  • Kim, Hyun-Su
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.17 no.1
    • /
    • pp.219-224
    • /
    • 2016
  • The vibration control performance of a semi-active damper connected to adjacent buildings subjected to seismic loads was investigated. The MR damper was used as a semi-active control device. A fuzzy logic control algorithm was used for effective control of the adjacent buildings connected to the MR damper. In the buildings control coupled with a MR damper, the response reduction of one building results in an increase in the response in another building. Because of these conflict characteristics, multi-objective optimization is required. Therefore, a fuzzy logic control algorithm for the control of a MR damper was optimized using a multi-objective genetic algorithm. Based on numerical analyses, the semi-active fuzzy control of MR damper for adjacent coupled buildings can provide good control performance.

A Study on the Focal Mechanism of the Hongsung Earthquake from the P-Wave Polarity Distributions (초동극성분포를 이용한 홍성지진의 Focal Mechanism 연구)

  • 김준경
    • The Journal of Engineering Geology
    • /
    • v.1 no.1
    • /
    • pp.121-136
    • /
    • 1991
  • The focal mechanism of the Hongsung Earthquake (1978. Oct. 7, M$_L$=5.0, Latitude 36.62N, Longitude 1 26.67E) was evaulated using the polarity distribution of the P-Waveforms. Through the non-linear computer process, the compatibility of polarity distributions of the 9 P-Waveforms observed at teleseismic distances from the Hongsung Earthquake epicenter was investigated to those of the focal mechanism determined from the varying strike, dip and rake angles. The resultant values for the strike and dip angle of the principal fault plane, which apparently matches very well the sunface lineament of the Hongsung region, are determined to be about 247 degree and 78 degree with uncertainties, respectively. However, the rake angle of the focal mechanism has wide range of 40 degree to 160 degree, which is mainly due to the poor coverage of the azimuthal angle of the observed seismic stations. Due to the consistency of principal stress axes, the resultant focal mechanism could support the current stress regime of that region, which may be caused by subduction of the Pacific Plate under the Eurasia Plate along the Japan Trench. It also provides information of seismic source characteristics of the part of the Korean Peninsula for aseismic design criteria such as Site Specific Response Spectrum and Strong Ground Motion Time History for the nuclear power plants and related nuclear waste disposal facility sites.

  • PDF

Structural health rating (SHR)-oriented 3D multi-scale finite element modeling and analysis of Stonecutters Bridge

  • Li, X.F.;Ni, Y.Q.;Wong, K.Y.;Chan, K.W.Y.
    • Smart Structures and Systems
    • /
    • v.15 no.1
    • /
    • pp.99-117
    • /
    • 2015
  • The Stonecutters Bridge (SCB) in Hong Kong is the third-longest cable-stayed bridge in the world with a main span stretching 1,018 m between two 298 m high single-leg tapering composite towers. A Wind and Structural Health Monitoring System (WASHMS) is being implemented on SCB by the Highways Department of The Hong Kong SAR Government, and the SCB-WASHMS is composed of more than 1,300 sensors in 15 types. In order to establish a linkage between structural health monitoring and maintenance management, a Structural Health Rating System (SHRS) with relevant rating tools and indices is devised. On the basis of a 3D space frame finite element model (FEM) of SCB and model updating, this paper presents the development of an SHR-oriented 3D multi-scale FEM for the purpose of load-resistance analysis and damage evaluation in structural element level, including modeling, refinement and validation of the multi-scale FEM. The refined 3D structural segments at deck and towers are established in critical segment positions corresponding to maximum cable forces. The components in the critical segment region are modeled as a full 3D FEM and fitted into the 3D space frame FEM. The boundary conditions between beam and shell elements are performed conforming to equivalent stiffness, effective mass and compatibility of deformation. The 3D multi-scale FEM is verified by the in-situ measured dynamic characteristics and static response. A good agreement between the FEM and measurement results indicates that the 3D multi-scale FEM is precise and efficient for WASHMS and SHRS of SCB. In addition, stress distribution and concentration of the critical segments in the 3D multi-scale FEM under temperature loads, static wind loads and equivalent seismic loads are investigated. Stress concentration elements under equivalent seismic loads exist in the anchor zone in steel/concrete beam and the anchor plate edge in steel anchor box of the towers.

Elastic floor response spectra of nonlinear frame structures subjected to forward-directivity pulses of near-fault records

  • Kanee, Ali Reza Taghavee;Kani, Iradj Mahmood Zadeh;Noorzad, Assadollah
    • Earthquakes and Structures
    • /
    • v.5 no.1
    • /
    • pp.49-65
    • /
    • 2013
  • This article presents the statistical characteristics of elastic floor acceleration spectra that represent the peak response demand of non-structural components attached to a nonlinear supporting frame. For this purpose, a set of stiff and flexible general moment resisting frames with periods of 0.3-3.6 sec. are analyzed using forty-nine near-field strong ground motion records. Peak accelerations are derived for each single degree of freedom non-structural component, supported by the above mentioned frames, through a direct-integration time-history analysis. These accelerations are obtained by Floor Acceleration Response Spectrum (FARS) method. They are statistically analyzed in the next step to achieve a better understanding of their height-wise distributions. The factors that affect FARS values are found in the relevant state of the art. Here, they are summarized to evaluate the amplification and/or reduction of FARS values especially when the supporting structures undergo inelastic behavior. The properties of FARS values are studied in three regions: long-period, fundamental-period and short-period. Maximum elastic acceleration response of non-structural component, mounted on inelastic frames, depends on the following factors: inelasticity intensity and modal periods of supporting structure; natural period, damping ratio and location of non-structural component. The FARS values, corresponded to the modal periods of supporting structure, are strongly reduced beyond elastic domain. However, they could be amplified in the transferring period domain between the mentioned modal periods. In the next step, the amplification and/or reduction of FARS values, caused by inelastic behavior of supporting structure, are calculated. A parameter called the response acceleration reduction factor ($R_{acc}$), has been previously used for far-field earthquakes. The feasibility of extending this parameter for near-field motions is focused here, suggested repeatedly in the relevant sources. The nonlinearity of supporting structure is included in ($R_{acc}$) for better estimation of maximum non-structural component absolute acceleration demand, which is ordinarily neglected in the seismic design provisions.

Geophysical Exploration and Well Logging for the Delineation of Geological Structures in a Testbed (실험 부지에서의 지질구조 파악을 위한 물리탐사 및 물리검층)

  • Yu, Huieun;Shin, Jehyun;Kim, Bitnarae;Cho, Ahyun;Lee, Gang Hoon;Pyun, Sukjoon;Hwang, Seho;Yu, Young-Chul;Cho, Ho-Young;Nam, Myung Jin
    • Journal of Soil and Groundwater Environment
    • /
    • v.27 no.spc
    • /
    • pp.19-33
    • /
    • 2022
  • When subsurface is polluted, contaminants tend to migrate through groundwater flow path. The groundwater flow path is highly dependent upon underground geological structures in the contaminated area. Geophysical survey is an useful tool to identify subsurface geological structure. In addition, geophysical logging in a borehole precisely provides detailed information about geological characteristics in vicinity of the borehole, including fractures, lithology, and groundwater level. In this work, surface seismic refraction and electrical resistivity surveys were conducted in a test site located in Namyangju city, South Korea, along with well logging tests in five boreholes installed in the site. Geophysical data and well logging data were collected and processed to construct an 3D geological map in the site.

Shaking table test and horizontal torsional vibration response analysis of column-supported vertical silo group silo structure

  • Li, Xuesen;Ding, Yonggang;Xu, Qikeng
    • Advances in concrete construction
    • /
    • v.12 no.5
    • /
    • pp.377-389
    • /
    • 2021
  • Reinforced concrete vertical silos are universal structures that store large amounts of granular materials. Due to the asymmetric structure, heavy load, uneven storage material distribution, and the difference between the storage volume and the storage material bulk density, the corresponding earthquake is very complicated. Some scholars have proposed the calculation method of horizontal forces on reinforced concrete vertical silos under the action of earthquakes. Without considering the effect of torsional effect, this article aims to reveal the expansion factor of the silo group considering the torsional effect through experiments. Through two-way seismic simulation shaking table tests on reinforced concrete column-supported group silo structures, the basic dynamic characteristics of the structure under earthquake are obtained. Taking into account the torsional response, the structure has three types of storage: empty, half and full. A comprehensive analysis of the internal force conditions under the material conditions shows that: the different positions of the group bin model are different, the side bin displacement produces a displacement difference, and a torsional effect occurs; as the mass of the material increases, the structure's natural vibration frequency decreases and the damping ratio Increase; it shows that the storage material plays a role in reducing energy consumption of the model structure, and the contribution value is related to the stiffness difference in different directions of the model itself, providing data reference for other researchers; analyzing and calculating the model stiffness and calculating the internal force of the earthquake. As the horizontal side shift increases in the later period, the torsional effect of the group silo increases, and the shear force at the bottom of the column increases. It is recommended to consider the effect of the torsional effect, and the increase factor of the torsional effect is about 1.15. It can provide a reference for the structural safety design of column-supported silos.