• Title/Summary/Keyword: Seismic bracing calculations

Search Result 2, Processing Time 0.018 seconds

TUTUM Easy-seismic: Development of a Seismic Design Automation Software for Building Fire Protection Systems (TUTUM Easy-seismic: 소방시설 내진설계 자동화 소프트웨어 개발)

  • Oh, Chang-Soo;Choi, Jun-Ho
    • Fire Science and Engineering
    • /
    • v.33 no.5
    • /
    • pp.140-148
    • /
    • 2019
  • In line with the "mandatory seismic design of fire protection facilities," development of design automation software is indispensable for improving the reliability and efficiency of seismic design. The seismic design automation software developed in this study is an automated S/W for seismic design of fire-fighting facilities, and functions such as automatic arrangement of anti-shake braces according to Korea National Fire Agency's Seismic Design Standards for fire-fighting facilities, output of seismic bracing calculation bills and automatic quantities counting. In addition, the seismic design automation software not only reduces the work speed by three times compared to the manual design of the designer, but also improves the reliability of the design by reducing the human error related to the design quantity such as the brace. In addition, in the seismic design method of fire protection facilities that have been approached conservatively, it was possible to perform the optimal seismic design by using computer algorithms for at least in the use of braces.

Buckling Experiment of Eccentric Seismic Bracing Devices for Branch Lines (내진설계용 편심방식 가지배관 고정장치의 좌굴 실험)

  • Changsoo, Oh;Jihoon, Kim;Hasung Kong
    • Journal of the Korea Safety Management & Science
    • /
    • v.26 no.1
    • /
    • pp.9-14
    • /
    • 2024
  • Restraints of Branch Lines are used as earthquake-resistant support devices for fire-fighting pipes along with sway brace devices. The central types are aligned and fixed in a straight line with center of the pipe, but the eccentric types are fixed to on side of the pipe, so a bending moment occurs. In this study, three specimens each of central type and eccentric type were installed at an angle of 45° from the vertical and a monotonic compression load of 1340N was applied. All central type samples satisfied 17.8mm of the allowable displacement, but all eccentric type samples failed to meet the target load and buckled. Therefore, when considering the performance of eccentric type restraints, both compressive load and bending moment must be considered. Even through material mechanics calculations, the yield stress of eccentric type - 3/8 inch all threaded steel bolt - exceeds 320Mpa of the allowable stress. A experiment standards need to be established for eccentric type restraints.