• Title/Summary/Keyword: Seismic Waves

Search Result 383, Processing Time 0.027 seconds

3-Dimentional numerical study on dynamic behavior of connection between vertical shaft and tunnel under earthquake loading (3차원 수치해석을 이용한 지진 시 수직구-터널 접속부 동적 거동 분석)

  • Kim, Jung-Tae;Cho, Gye-Chun;Kang, Seok-Jun;Kim, Ki Jung;Hong, Eun-Soo
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.20 no.5
    • /
    • pp.887-897
    • /
    • 2018
  • 3D time history analysis was performed on vertical shaft-tunnel connection to provide insight into the dynamic stress-strain behavior of the connection considering the effects of soil layers, periodic characteristics and wave direction of earthquakes. MIDAS GTS NX based on FEM (Finite Element Method) was used for this study. From this study, it is revealed that the maximum displacement occurred at the upper part of the connection when the long period seismic waves propagate through the tunnel direction in soft ground. Also, stress concentration occurs due to different behaviors of vertical shaft and tunnel, and the stress concentration could be influence for safety on the connection. The results of this study could be useful for the seismic performance design of vertical shaft-tunnel connection.

Strain-dependent dynamic properties of cemented Busan clay (부산 고결점토의 변형률 의존적 동적거동특성에 관한 연구)

  • Kim, Ah-Ram;Chang, Il-Han;Cho, Gye-Chun;Shim, Sung-Hyun;Kang, Yeoun-Ike
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2010.09b
    • /
    • pp.61-67
    • /
    • 2010
  • Thick soft clay deposits which are generally located at the west and south coast of the Korean peninsula have complicated characteristics according to their orientation and formation history. Thus, several geotechnical problems could possibly occur when those soft clay deposits are used as foundations for marine structures. Deep cement mixing (DCM) method is one of the most widely used soft soil improvement method for various marine structures, nowadays. DCM method injects binders such as cement into the soft ground directly and mixes with the in-situ soil to improve the strength and other geotechnical properties sufficiently. However, the natural impacts induced by dynamic motions such as ocean waves, wind, typhoon, and tusnami give significant influences on the stability of marine structures and their underlaying foundations. Thus, the dynamic properties become important design criteria to insure the seismic stability of marine structures. In this study, the dynamic behavior of cemented Busan clay is evaluated. Laboratory unconfined compression test and resonant column test are performed on natural in-situ soil and cement mixed specimens to confirm the strength and strain-dependent dynamic behavior variation induced by cement mixing treatment. Results show that the unconfined compressive strength and shear modulus increase with curing time and cement content increment. Finally, the optimized cement mixing ratio for sufficient dynamic stability is obtained through this study. The results of this study are expected to be widely used to improve the reliability of seismic design for marine structures.

  • PDF

Mapping of Liquefaction Potential in Songdo Reclamied Land (송도매립지역의 액상화 구역도 작성)

  • Kim, Sung-Hwan
    • Journal of the Society of Disaster Information
    • /
    • v.14 no.3
    • /
    • pp.296-304
    • /
    • 2018
  • Purpose: This study was carried out to evaluate the liquefaction potential of the land reclamation area in Incheon by using the ProShake program for long frequency Hachinohe seismic wave and short frequency Ofunato seismic waves to interpret ground response. Method: The interpretation results and the Modified Seed and Idriss method were used to evaluate the liquefaction potential. The liquefaction potential index which proposed by Iwasaki was calculated to be used as a guide line to represent the liquefaction evaluation results at the given location. The equivalent liquefaction factor of safety presented by Kang(1999) was used as a quantitative index to draw up the mapping of liquefaction potential. Results: This paper presents the mapping of liquefaction potential for the Incheon seaside reclamation area using both the liquefaction potential index and the equivalent liquefaction factor of safety. Conclution: As a result, the mapping of liquefaction based on the liquefaction potential index and equivalent liquefaction factor of safety shows similar distribution pattern.

Dynamic Behavior of 2D 8-Story Unbraced Steel Frame with Partially Restrained Composite Connection (합성반강접 접합부를 갖는 2차원 8층 비가새 철골골조의 동적거동)

  • Kang, Suk Bong;Lee, Kyung Taek
    • Journal of Korean Society of Steel Construction
    • /
    • v.19 no.5
    • /
    • pp.503-513
    • /
    • 2007
  • The seismic responses of a building are affected by the connection characteristics that have effects on structural stiffness. In this study, push-over analysis and time history analysis were performed to estimate structural behavior of 2D eight-story unbraced steel structures with partially restrained composite connections using a nonlinear dynamic analysis program. Nonlinear $M-{\theta}$characteristics of connection and material inelastic characteristics of composite beam and steel column were considered. The idealization of composite semi-rigid connection as fully rigid connection yielded an increase in initial stiffness and ultimate strength in the push-over analysis. In time history analysis, the stiffness and hysteretic behavior of connections have effects on base-shear force, maximum story-drift and maximum moment in beams and columns. For seismic waves with PGA of 0.4 g, the structure with the semi-rigid composite connections shows the maximum story-drift with less than the life safety criteria by FEMA 273 and no inelastic behavior of beam and column, whereas in the structure with rigid connections, beams and columns have experienced inelastic behaviors.

Structural Stability Evaluation of Eco-Friendly Prefabricated Rainwater Infiltration Type Detention Facility with Red Clay Water-Permeable Block Body (황토투수블록체를 적용한 친환경 조립식 빗물 침투형 저류시설의 구조 안정성 평가)

  • Choi, Hyeonggil;Lee, Taegyu;Kim, Hojin;Choi, Heeyong
    • Journal of the Korea Institute of Building Construction
    • /
    • v.22 no.1
    • /
    • pp.1-10
    • /
    • 2022
  • Recently, due to the frequent occurrence of localized torrential rains and heat waves caused by abnormal climates. For this reason, it is necessary to develop an economical and eco-friendly rainwater detention facility that can secure the groundwater level through rainwater detention as well as flood prevention against concentrated rainfall by simultaneously implementing rainwater permeation and storage. In this study, the structural safety of an eco-friendly rainwater infiltration type detention facility made using eco-friendly inorganic binders including red clay was examined. Static analysis considering the constant load and additional vertical load and dynamic analysis considering the seismic spectrum were performed. As a result, it was found that the eco-friendly prefabricated rainwater infiltration type detention facility developed in this study has a maximum stress of about 68.1% to 75.4% and a maximum displacement of about 0.9% to 9.6% under the same load and seismic conditions compared to the existing PE block rainwater detention facility. It was confirmed that the eco-friendly prefabricated rainwater infiltration type detention facility secured excellent structural stability.

S-wave Velocity and Attenuation Structure from Multichannel Seismic surface waves: Geotechnical Characteristics of NakDong Delta Soil (다중채널 표면파 자료를 이용하여 구한 S파 속도와 감쇠지수 구조: 낙동강 하구의 연약 지반 특성)

  • Jung, Hee-Ok
    • Journal of the Korean earth science society
    • /
    • v.25 no.8
    • /
    • pp.774-783
    • /
    • 2004
  • The S wave velocity and Q$s^{-1}$ structure of the uppermost part of the soil in Nakdong Delta area have been obtained to determine the characteristics of the forementioned soil. The phase and attenuation coefficients of multichannel seismic records were inverted to obtain the S wave velocity and Q$s^{-1}$ structure of the soil. The inversion results have been compared with the borehole measurements of the area. The seismic signal of the nearest geophone from a seismic source was used as the source signal to obtain the attenuation coefficients. Amplitude ratios of the signal at each geophone to the source signal wave plotted as a function of distance for the frequency range between 10 Hz and 45 Hz. The slope of a linear regression line which fits amplitude ratio-distance relationship best for a given frequency was used as the attenuation coefficients for the frequency. The dispersion curve of Rayleigh waves and the attenuation coefficients were inverted to obtain the S-wave velocity and Q$s^{-1}$, respectively, in the uppermost 8 meter of soil layer. The borehole measurements of the area show that are two distinct layers; the upper 4 meter of silty-sand and the lower 4 meter of silty-clay. The inversion results indicate that the shear wave velocity of the upper layer is 80 m/sec and 40m/sec in the lower silty-clay layer. The spacial resolution of the shear wave velocity structure is very good down to a depth of 8 meter. The Q$s^{-1}$ in the upper silty-sand layer is 0.02 and increase to 0.03 in the lower silty-sand layer. The spacial resolution of quality factor is relatively good down to a depth of 5 meter, but very poor below the depth. In this study, the S-wave velocity is higher in the silty-clay and the Q$s^{-1}$ is smaller silty-sand than in the silty-clay. However, much more data should be analyzed and accumulated before making any generalization on the shear wave velocity and Q$s^{-1}$ of the sediments.

A Study on the Detection of Small Cavity Located in the Hard Rock by Crosswell Seismic Survey (경암 내 소규모 공동 탐지를 위한 시추공간 탄성파탐사 기법의 적용성 연구)

  • Ko, Kwang-Beom;Lee, Doo-Sung
    • Geophysics and Geophysical Exploration
    • /
    • v.6 no.2
    • /
    • pp.57-63
    • /
    • 2003
  • For the dectection of small cavity in the hard rock, we investigated the feasibility of crosswell travel-time tomography and Kirchhoff migration technique. In travel-time tomography, first arrival anomaly caused by small cavity was investigated by numerical modeling based on the knowledge of actual field information. First arrival delay was very small (<0.125 msec) and detectable receiver offset range was limited to 4m with respect to $1\%$ normalized first arrival anomaly. As a consequence, it was turned out that carefully designed survey array with both sufficient narrow spatial spacing and temporal (<0.03125 msec) sampling were required for small cavity detection. Also, crosswell Kirchhoff migration technique was investigated with both numerical and real data. Stack section obtained by numerical data shows the good cavity image. In crosswell seismic data, various unwanted seismic events such as direct wave and various mode converted waves were alto recorded. To remove these noises und to enhance the diffraction signal, combination of median and bandpass filtering was applied and prestack and stacked migration images were created. From this, we viewed the crosswell migration technique as one of the adoptable method for small cavity detection.

Development of a Seismic Measurement System with a reference for the Reduction of Artificial Noise (인공잡음 제거를 위한 기준점 이용 탄성파 측정시스템 개발)

  • Hwang, Hak-Soo;Lee, Tai-Sup;Sung, Nak-Hoon
    • Geophysics and Geophysical Exploration
    • /
    • v.2 no.4
    • /
    • pp.180-183
    • /
    • 1999
  • A proto-type seismic measurement system with a reference was developed to improve S/N (signal-to-noise ratio) of seismic data, especially in noisy urban areas. Two pairs of correlation measurements (the one for microphone and geophone, and another for electromagnetic (EM) loop and geophone) were carried out near Kimpo Airport and at Kimje. The spectrum analyses were also performed to investigate the correlation of two pairs of time series; one for microphone and geophone, and another for EM loop and geophone. The sound waves measured with the microphone and the geophone are highly correlated. However, differences in the reponses are readily identifiable across 200 Hz; in the vicinity of 100 Hz, the spectral energy for geophone is 20 dB higher than that for microphone, and at near 500 Hz, the spectral energy for microphone is 30 dB higher than that for geophone. Overall, the spectral energy appears concentrated on the frequency window below 600 Hz for geophone. It contrasts with the observation of dominant frequency at the range of above 200 Hz for microphone. The wave forms of EM noise (due to an ACDC inverter) measured with EM loop and geophone are consistently and highly correlated each other. The power spectrum of the EM noise for EM loop shows that the spectral energies at odd harmonic frequencies of 60 Hz are higher than those at even harmonic frequencies of 60 Hz. It is compared to the power spectrum for geophone; the spectral energies at odd harmonics are nearly same as those at even harmonic frequencies.

  • PDF

Dynamic Analysis of 3 Different Cross-Sectional Shapes of a Fill Dam using 3D FEM Analysis (3차원 유한요소해석에 의한 필 댐의 3가지 단면 형상을 고려한 지진해석)

  • Choi, Byoungil
    • Journal of the Korean GEO-environmental Society
    • /
    • v.16 no.8
    • /
    • pp.37-43
    • /
    • 2015
  • Dam movements are identified in real-time with measuring instruments for dam maintenance. However, for dams that have aged, the measuring instruments that were installed during the dam construction are frequently malfunctioning or completely failing altogether. Precision safety diagnosis is being executed for dams that are national facilities Type 1. During the diagnosis, a safety assessment is conducted for the dam body. Normally, during the analysis of dam safety, the widest cross-section is selected and a two-dimensional numerical analysis is taken place for the cross-section. However, numerous researchers have recently looked into applying the 3-dimensional numerical analysis program developments to precisely analyze the structure of the dam, as well as the surrounding strata, and the lower dam strata. In this study, PLAXIS 3D, a geotechnical generic FEM analysis program, was used to conduct dam safety assessments for earthquakes. The following were compared and analyzed: considering the seismic properties of the dam body with all zoned structures reflected as one rock-fill zone together with the dam body, considering the dam body as the rock-fill zone and the core zone, and the numerical analysis results. Thus, the study was aimed to analyze the impact properties of seismic waves according to the different zones.

3-D Crustal Velocity Tomography in the Southern Part of The Korean Peninsula (한반도 남부지역의 3-D 속도 토모그래피)

  • Kim, So Gu;Li, Qinghe
    • Economic and Environmental Geology
    • /
    • v.31 no.2
    • /
    • pp.127-139
    • /
    • 1998
  • A new technique of simultaneous inversion for 3-D seismic velocity structure by using direct, reflected, and refracted waves is applied to the southeast part of the Korean Peninsula including Pohang Basin, Kyongsang Basin and Ryongnam Massif. Pg, Sg, PmP, SmS, Pn, and Sn arrival times of 44 events with 554 seismic rays are inverted for locations and crustal structure. $6{\times}6$ with $0.5^{\circ}$ and 8 layers (4 km each layer) model was inverted. 3-D seismic crustal velocity tomography including eight sections from surface to Moho, ten profiles along latitude and longitude are analyzed. The results are as follows: 1) the average velocity and thickness of sediment are 5.04 km/s and 3-4 km, and the velocity of basement is 6.11 km/s. The shape of velocity in shallower layer is agreement with Bouguer gravity anomaly (Cho et al., 1997). 2) the velocities fluctuate strongly in the upper crust. The velocity distribution of the lower crust under Conrad appears basically horizontal. 3) the average depth of Moho is 30.4 km, and velocity is 8.01 km/s. 4) from the velocity and depth of the sediment, the thickness, velocity and form of the upper crust, and the depth and form of Moho, we can find the obvious differences among Ryongnam Massif, Kyongsang Basin and Pohang Basin. 5) the deep faults (a Ulsan series faults) near Kyongju and Pohang areas can be found to be normal and/or thrust faults with detachment extended to the bottom of the upper crust.

  • PDF