• Title/Summary/Keyword: Seismic Safety

Search Result 1,020, Processing Time 0.028 seconds

Applicability of Coda Wave Interferometry Technique for Measurement of Acoustoelastic Effect of Concrete

  • Shin, Sung Woo
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.34 no.6
    • /
    • pp.428-434
    • /
    • 2014
  • In this study, we examined the applicability of coda wave interferometry (CWI) technique, which was developed to characterize seismic waves, to detect and evaluate change in the velocity of ultrasonic waves in concrete due to acoustoelastic effect. Ultrasonic wave measurements and compressive loading tests were conducted on a concrete specimen. The measured wave signals were processed with CWI to detect and evaluate the relative velocity change with respect to the stress state of the specimen. A phase change due to the acoustoelastic effect of concrete was clearly detected in the late-arriving coda wave. This shows that the relative velocity change of ultrasonic waves in concrete due to the acoustoelastic effect can be evaluated successfully and precisely using CWI.

A Study on the control force of HMD for vibration control of the tall building structure (고층 구조물의 진동제어를 위한 복합형 질량댐퍼의 제어력 설계에 관한 연구)

  • Park, Jin-Il;Park, Hae-Dong;Choi, Hyun;Kim, Doo-Hoon
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2000.11a
    • /
    • pp.276-281
    • /
    • 2000
  • As the construction of the high-rise building increases worldwide, the effort has been exerted to improve the safety and serviceability if the structure against various types of external dynamic loads such as wind load, seismic load, etc. The mass damper, defined as dynamic absorber in mechanical engineering is known one of the effective methods to control the vibration of flexible large structures. The hybrid mass damper, HMD is known as the most appropriate type of the mass dampers. In this paper, the control force was designed for HMD by numerical simulations and the performance of HMD to control the flexible vibration of the steel tower induced by sinusoidal force excitation was evaluated, also TMD was designed for a 1-DOF lumped mass model.

  • PDF

Fragility Curve of Continuous Buried Pipeline subjected to Transverse Permanent Ground Deformation due to Liquefaction (액상화.횡방향 영구지반변형을 받는 연속된 지중매설관로의 구조적 손상도곡선 도출)

  • Kim, Tae-Wook;Lim, Yun-Mook
    • Proceedings of the Earthquake Engineering Society of Korea Conference
    • /
    • 2006.03a
    • /
    • pp.358-365
    • /
    • 2006
  • In this study, fragility curves of continuous buried pipelines subjected to transverse PGD (permanent ground deformation) due to liquefaction are proposed. For the waterworks system, continuos buried pipelines made of ductile iron, poly ethylene, and poly vinyl chloride are analyzed and fragility curves are drawn. Fragility curves are based on the repetitive analyses results and formulated with the dominant factors of behaviour of buried pipeline. With the use of fragility curves, engineers can estimate the status of damage of buried pipeline without overall knowledge of relevant features. Especially, fragility curves proposed in this study will act as a major module of earthquake loss estimation method. Moreover, critical value of magnitude and width of transverse PGD (by which the full damage status of buried pipelines are induced) are estimated. With the use of regression curves of these values, pre evaluation of seismic safety of buried pipelines located within liquefaction hazardous region will be possible.

  • PDF

Citic Tower Construction Key Technology

  • Xu, Lishan
    • International Journal of High-Rise Buildings
    • /
    • v.8 no.3
    • /
    • pp.185-192
    • /
    • 2019
  • Citic Tower is the first over-500 m-tall super highrise building in the world, located in the high seismic intensity area with paek ground acceleration over 0.2g in 475 years. This project is unique in its complexity, large volume, and challenging site conditions (zero site for construction). The traditional techniques can hardly meet safty, quality and schedule requirements of the construction. This article introduces the key construction technologies that are innovatively developed and applied in Citic Tower project construction, including intelligent super-high-rise building integrated construction platform system, independently developed by the CCTEB; Jump-Lift Elevator, which is the first of the kind with service height over 500 meters; combined temporary-and-permanent fire protection systems. The BIM technology is also applied in this project. Through technical innovation, and utilization of technologies, construction speed and safety had been greatly improved.

Dynamic response evaluation of deep underground structures based on numerical simulation

  • Yoo, Mintaek;Kwon, Sun Yong;Hong, Seongwon
    • Geomechanics and Engineering
    • /
    • v.29 no.3
    • /
    • pp.269-279
    • /
    • 2022
  • In this research, a series of dynamic numerical analysis were carried out for deep underground building structures under the various earthquake conditions. Dynamic numerical analysis model was developed based on the PLAXIS2D and calibrated with centrifuge test data from Kim et al. (2016). The hardening soil model with small strain stiffness (HSSMALL) was adopted for soil constitutive model, and interface elements was employed at the interface between plate and soil elements to simulate dynamic interaction effect. In addition, parametric study was performed for fixed condition and embedded depth. Finally, the dynamic behavior of underground building structure was thoroughly analyzed and evaluated.

Rocking Behavior of Unreinforced Masonry Walls Under Cyclic Load (주기하중을 받는 비보강 조적벽체의 강체회전거동)

  • Eom, Tae Sung;Kim, Jinwoo;Kim, Seon-Woong;Kim, Jae-Hwan;Han, Ju-Yeon;Choi, Ho
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.27 no.1
    • /
    • pp.49-57
    • /
    • 2023
  • This study investigated the rocking behavior of unreinforced masonry walls and wall piers under cyclic loading. Based on the benchmark tests, the characteristics of load-deformation relations in masonry walls with rocking failure were captured, focusing on observed deformation modes. The rocking strengths of masonry walls (i.e., peak and residual strengths) were evaluated, and the effects of opening configurations on the masonry wall strength were examined. The deformation capacity of the rocking behavior and the hysteresis shape of the load-deformation relations were also identified. Based on the results, modeling approaches for the rocking behavior of masonry walls were discussed.

Seismic Retrofit after 921 Earthquake

  • Tsai, C.S.
    • Proceedings of the Earthquake Engineering Society of Korea Conference
    • /
    • 2000.04a
    • /
    • pp.18-20
    • /
    • 2000
  • At 1:47 a.m, local time on September 21, 1999, a strong earthquake measured 7.3 on the Richter scale struck central Taiwan evoking another two earthquakes a few seconds late to wake up unprepared people of this small island. It caused 2,465 people killed 11,305 injured about 10,000 buildings collapsed and around 41,000 severely damaged, The major concerns after the earthquake are how to have learned from this natural disaster and how to rebuild earthquake-proof buildings without rendering up safety within reasonable costs. Inevitable actions for redrafting the building codes have been taken to re-strengthen the existing and new structures. Structural analysis tools and computer programs adopted by most practicing engineers have been re-examined to take into account the effects of the vertical component of ground shakings on structural responses. Most private structures were repaired by traditional methods without considering upgrading seismic resistibility because of economical reasons. Buildings open to the public are under consideration possibly enforced by making regulations to be upgraded to satisfy revised building codes. In addition new rehabilitation technologies such as structural control have been moving much faster than before and have become accepted by the public due to frequent reports by media and specialists. Building codes related to base isolators and energy absorption systems are still under legislation and expected to be published soon. Most of the new structures under construction designed by the building codes promulgated before the earthquake have been reconsidered to comply with the new codes even though it is not compulsory. Efforts have been made by the government engineering and research communities and universities in an attempt to reduce structural damage for future earthquakes and to construct if possible Taiwan as an earthquake-proof island.

  • PDF

A Shaking Table Test for Equipment Isolation in the NPP (I): Rubber Bearing (원전기기의 면진을 위한 진동대 실험 I : 고무베어링)

  • Kim, Min-Kyu;Choun, Young-Sun;Choi, In-Kil
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.8 no.5 s.39
    • /
    • pp.65-77
    • /
    • 2004
  • In this study, the base isolation systems for equipment in the NPP are presented and the responses of each isolation system are investigated. As for the base isolation systems, a natural rubber bearing (NRB) and a high damping rubber bearing (HDRB) are selected. As input motions, artificial time histories enveloping the US NRC RG 1.60 spectrum and the probability-based scenario earthquake spectra developed for the Korean nuclear power plant site as well as a typical near-fault earthquake record are used. Uniaxial, biaxial, and triaxial excitations are conducted with PGAs of 0.1, 0.2 and 0.25g. The reduction of the seismic forces transmitted to the equipment models are determined for different isolation systems and input motions.

Seismic behavior of concentrically steel braced frames and their use in strengthening of reinforced concrete frames by external application

  • Unal, Alptug;Kaltakci, Mevlut Yasar
    • Steel and Composite Structures
    • /
    • v.21 no.4
    • /
    • pp.687-702
    • /
    • 2016
  • There are many studies in the literature conducted on the subject of ensuring earthquake safety of reinforced concrete and steel structures using steel braced frames, but no detailed study concerning individual behavior of steel braced frames under earthquake loads and strengthening of reinforced concrete structures with out-of-plane steel braced frames has been encountered. In this study, in order to evaluate behaviors of "Concentrically Steel Braced Frames" types defined in TEC-2007 under lateral loads, dimensional analysis of Concentrically Steel Braced Frames designed with different scales and dimensions was conducted, the results were controlled according to TEC-2007, and after conducting static pushover analysis, behavior and load capacity of the Concentrically Steel Braced Frames and hinges sequence of the elements constituting the Concentrically Steel Braced Frames were tested. Concentrically Steel Braced Frames that were tested analytically consist of 2 storey and one bay, and are formed as two groups with the scales 1/2 and 1/3. In the study, Concentrically Steel Braced Frames described in TEC-2007 were designed, which are 7 types in total being non-braced, X-braced, V- braced, $\wedge$- braced, $\backslash$- braced, /- braced and K- braced. Furthermore, in order to verify accuracy of the analytic studies performed, the 1/2 scaled concentrically steel X-braced frame test element made up of box profiles and 1/3 scaled reinforced concrete frame with insufficient earthquake resistance were tested individually under lateral loads, and test results were compared with the results derived from analytic studies and interpreted. Similar results were obtained from both experimental studies and pushover analyses. According to pushover analysis results, load-carrying capacity of 1/3 scaled reinforced concrete frames increased up to 7,01 times as compared to the non-braced specimen upon strengthening. Results acquired from the study revealed that reinforced concrete buildings which have inadequate seismic capacity can be strengthened quickly, easily and economically by this method without evacuating them.

A Study on the Criteria for the Earthquake Safety Evaluation of Fill Dams (필댐의 내진 성능 평가 기준에 대한 고찰)

  • Choo, Yun-Wook;Lee, Sei-Hyun;Kim, Mu-Kwang;Kim, Dong-Soo
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.15 no.6
    • /
    • pp.19-31
    • /
    • 2011
  • The current Korean criteria for seismic performance evaluated by dynamic analysis regulates that the horizontal displacement and vertical settlement of a dam body, including the static deformation, should be within 1% of the dam height. However, there has been weak theoretical support, so that the current criteria have to be validated. Korea is in a region of low or moderate seismicity located inside the Eurasian plate, and few earthquakes with considerable magnitudes and intensities have been recorded in the area. Therefore, in this study, published data measured in overseas countries were collected in order to construct a database and validate the current criteria. In addition, dynamic centrifuge tests and a parametric study using numerical simulations were performed in order to investigate the effect on the horizontal displacement and settlement of a dam body and to validate the current criteria.