• Title/Summary/Keyword: Seismic Response Control

Search Result 371, Processing Time 0.034 seconds

Numerical Verification of the Proposed Design Procedure of MR Damper for Seismic Response Control of Building Structure (건축 구조물의 지진응답 제어를 위해 제안된 MR감쇠기 설계 절차의 수치적 검증)

  • Lee, Sang-Hyun;Min, Kyung-Won;Lee, Roo-Jee
    • Proceedings of the Earthquake Engineering Society of Korea Conference
    • /
    • 2005.03a
    • /
    • pp.521-528
    • /
    • 2005
  • In our previous study, we have developed a preliminary design procedure of MR dampers for controlling seismic response of building structures. In this paper, the effectiveness the proposed method is verified through the numerical analysis of the structures with various period and story number, and twenty earthquake loads are used for statistical assessment. The comparison between the proposed method and simplified sequential search algorithm indicates that the capacity, number and the placement of the MR damper which can achieve the given performance objective are reasonably determined using the proposed design procedure.

  • PDF

Dynamic Characteristics of the Integral Reactor SMART

  • Kim, Tae-Wan;Park, Keun-Bae;Jeong, Kyeong-Hoon;Lee, Gyu-Mahn;Park, Suhn
    • Nuclear Engineering and Technology
    • /
    • v.33 no.1
    • /
    • pp.111-120
    • /
    • 2001
  • In this study, a dynamic analysis of the integral reactor SMART (System-integrated Modular Advanced ReacTor) under postulated seismic events is performed to review the response characteristics of the major components. To enhance the feasibility of an analysis model, a detailed finite element model is synchronized with the products of concurrent design activities. The artificial time history, which has been applied to the seismic analysis for the Korean Standard Nuclear Power Plant (KSNP), is chosen to envelop broad site specifics in Korea. Responses in the horizontal direction are found slightly amplified, while those in the vertical direction are suppressed. Since amplified response is monitored at the control element drive mechanism (CEDM), minor design provision is considered to enhance the integrity of the subsystem.

  • PDF

Earthquake resistant performance of steel frame with hysteretic damper (시간이력감쇠기를 가진 강골조의 지진저항성능)

  • Chang, Chun-Ho;Kwon, Min-Ho
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.7 no.3
    • /
    • pp.193-203
    • /
    • 2003
  • This paper highlights research being conducted to identify ground motion and structural characteristics that control the response of concentrically braced frames using hysteretic damper, unbonded brace, and to identify improved design procedures and code provisions. The focus of this paper is on the seismic response of six story concentrically braced frames utilizing hysteretic damper. A brief discussion is provided regarding the mechanical properties of such braces and the benefit of their use. Results of detailed nonlinear dynamic analyses are then examined for specific cases to characterize the effect on key response parameters of structural configurations and proportions.

Nonlinear analyses of structures with added passive devices

  • Tsai, C.S.;Chen, Kuei-Chi
    • Structural Engineering and Mechanics
    • /
    • v.18 no.4
    • /
    • pp.517-539
    • /
    • 2004
  • Many types of passive control devices have been recognized as effective tools for improving the seismic resistance of structures. A lot of past research has been carried out to study the response of structures equipped with energy-absorbing devices by assuming that the behavior of the beam-column systems are linearly elastic. However, linear theory may not be adequate for beams and columns during severe earthquakes. This paper presents the results of research on the nonlinear responses of structures with and without added passive devices under earthquakes. A new material model based on the plasticity theory and the two-surface model for beams and columns under six components of forces is proposed to predict the nonlinear behavior of beam-column systems. And a new nonlinear beam element in consideration of shear deformation is developed to analyze the beams and columns of a structure. Numerical results reveal that linear assumption may not be appropriate for beams and columns under seismic loadings, especially for unexpectedly large earthquakes. Also, it may be necessary to adopt nonlinear beam elements in the analysis and design process to assure the safety of structures with or without the control of devices.

Seismic analysis in pad concrete foundation reinforced by nanoparticles covered by smart layer utilizing plate higher order theory

  • Taherifar, Reza;Zareei, Seyed Alireza;Bidgoli, Mahmood Rabani;Kolahchi, Reza
    • Steel and Composite Structures
    • /
    • v.37 no.1
    • /
    • pp.99-115
    • /
    • 2020
  • This article deals with the dynamic analysis in pad concrete foundation containing Silica nanoparticles (SiO2) subject to seismic load. In order to control the foundation smartly, a piezoelectric layer covered the foundation. The weight of the building by a column on the foundation is assumed with an external force in the middle of the structure. The foundation is located in soil medium which is modeled by spring elements. The Mori-Tanaka law is utilized for calculating the equivalent mechanical characteristics of the concrete foundation. The Kevin-Voigt model is adopted to take into account the structural damping. The concrete structure is modeled by a thick plate and the governing equations are deduced using Hamilton's principle under the assumption of higher-order shear deformation theory (HSDT). The differential quadrature method (DQM) and the Newmark method are applied to obtain the seismic response. The effects of the applied voltage to the smart layer, agglomeration and volume percent of SiO2 nanoparticles, damping of the structure, geometrical parameters and soil medium of the structure are assessed on the dynamic response. It has been demonstrated by the numerical results that by applying a negative voltage, the dynamic deflection is reduced significantly. Moreover, silica nanoparticles reduce the dynamic deflection of the concrete foundation.

TMD effectiveness in nonlinear RC structures subjected to near fault earthquakes

  • Domizio, Martin N.;Ambrosini, Daniel;Curadelli, Oscar
    • Smart Structures and Systems
    • /
    • v.24 no.4
    • /
    • pp.447-457
    • /
    • 2019
  • The use of Tuned mass dampers (TMD) has proved to be effective in reducing the effects of vibrations caused by wind loads and far-field seismic action. However, its effectiveness in controlling the dynamic response of structures under near-fault earthquakes is still under discussion. In this case, the uncertainty about the TMD performance arises from the short significant duration of near-fault ground motions. In this work, the TMD effectiveness for increasing the safety margin against collapse of structures subjected to near-fault earthquakes is investigated. In order to evaluate the TMD performance in the proposed scenario, the nonlinear dynamic response of two reinforced concrete (RC) frames was analyzed. TMDs with different mass values were added to these structures, and a set of near-fault records with frequency content close to the fundamental frequency of the structure was employed. Through a series of nonlinear dynamic analysis, the minimum amplitude of each seismic record that causes the structural collapse was found. By comparing this value, called collapse acceleration, for the case of the structures with and without TMD, the benefit produced by the addition of the control device was established.

Performance Evaluation of a Large-scale MR Damper for Controlling Seismic Response using a Real-time Hybrid Test Method (실시간 하이브리드 실험법을 이용한 대형 MR감쇠기의 제진 성능평가)

  • Chung, Hee-San;Lee, Sung-Kyung;Park, Eun-Churn;Youn, Kyung-Jo;Min, Kyung-Won;Lee, Heon-Jae;Choi, Kang-Min;Moon, Suk-Jun;Jung, Hyung-Jo
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2007.11a
    • /
    • pp.655-660
    • /
    • 2007
  • This paper presents real-time hybrid test method of large-scale MR damper applied to a building structure under seismic excitation. The real-time hybrid test using an actuator for the control performance evaluation of a MR damper controlling the response of earthquake-excited building structure is experimentally implemented. In the test, the building structure is used as a numerical part, on which a large-scale MR damper adopted as an experimental part was installed to reduce its response. At first, the force that is acting between a MR damper and building structure is measured from the load cell attached on the actuator system and is fed-back to the computer to control the motion of the actuator. Then, the actuator is so driven that the error between the interface displacement computed from the numerical building structure with the excitations of earthquake and the fed-back interface force and that measured from the actuator. The control efficiency of the MR damper used in this paper is experimentally confirmed by implementing this process of experiment on real-time.

  • PDF

Neuro-Control of Seismically Excited Structures using Semi-active MR Fluid Damper (반능동 MR 유체 감쇠기를 이용한 지진하중을 받는 구조물의 신경망제어)

  • 이헌재;정형조;오주원;이인원
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2002.10a
    • /
    • pp.313-320
    • /
    • 2002
  • A new semi-active control strategy for seismic response reduction using a neuro-controller and a magnetorheological (MR) fluid damper is proposed. The proposed control system consists of the improved neuro-controller and the bang-bang-type controller. The improved neuro-controller, which was developed by employing the training algorithm based on a cost function and the sensitivity evaluation algorithm replacing an emulator neural network, produces the desired active control force, and then the bang-bang-type controller causes the MR fluid damper to generate the desired control force, so long as this force is dissipative. In numerical simulation, a three-story building structure is semi-actively controlled by the trained neural network under the historical earthquake records. The simulation results show that the proposed semi-active neuro-control algorithm is quite effective to reduce seismic responses. In addition, the semi-active control system using MR fluid dampers has many attractive features, such as the bounded-input, bounded-output stability and small energy requirements. The results of this investigation, therefore, indicate that the proposed semi-active neuro-control strategy using MR fluid dampers could be effectively used for control of seismically excited structures.

  • PDF

Reward Design of Reinforcement Learning for Development of Smart Control Algorithm (스마트 제어알고리즘 개발을 위한 강화학습 리워드 설계)

  • Kim, Hyun-Su;Yoon, Ki-Yong
    • Journal of Korean Association for Spatial Structures
    • /
    • v.22 no.2
    • /
    • pp.39-46
    • /
    • 2022
  • Recently, machine learning is widely used to solve optimization problems in various engineering fields. In this study, machine learning is applied to development of a control algorithm for a smart control device for reduction of seismic responses. For this purpose, Deep Q-network (DQN) out of reinforcement learning algorithms was employed to develop control algorithm. A single degree of freedom (SDOF) structure with a smart tuned mass damper (TMD) was used as an example structure. A smart TMD system was composed of MR (magnetorheological) damper instead of passive damper. Reward design of reinforcement learning mainly affects the control performance of the smart TMD. Various hyper-parameters were investigated to optimize the control performance of DQN-based control algorithm. Usually, decrease of the time step for numerical simulation is desirable to increase the accuracy of simulation results. However, the numerical simulation results presented that decrease of the time step for reward calculation might decrease the control performance of DQN-based control algorithm. Therefore, a proper time step for reward calculation should be selected in a DQN training process.