• 제목/요약/키워드: Seismic Protection

검색결과 154건 처리시간 0.02초

Numerical and experimental studies of a building with roller seismic isolation bearings

  • Ortiz, Nelson A.;Magluta, Carlos;Roitman, Ney
    • Structural Engineering and Mechanics
    • /
    • 제54권3호
    • /
    • pp.475-489
    • /
    • 2015
  • This study presents the validation of a numerical model developed for dynamic analysis of buildings with roller seismic isolation bearings. Experimental methods allowed validation of the motion equations of a physical model of a building with and without roller bearings under base excitation. The results are presented in terms of modal parameters, frequency response functions (FRFs) and acceleration response. The agreement between numerical and experimental results proves the accuracy of the developed numerical model. Finally, the performance of the constructed seismic protection system is assessed through a parametric study.

Steel hexagonal damper-brace system for efficient seismic protection of structures

  • Mohammad Mahdi, Javidan;Jinkoo, Kim
    • Steel and Composite Structures
    • /
    • 제45권5호
    • /
    • pp.683-695
    • /
    • 2022
  • Conventional braces are often used to provide stiffness to structures; however due to buckling they cannot be used as seismic energy dissipating elements. In this study, a seismic energy dissipation device is proposed which is comprised of a bracing member and a steel hysteretic damper made of steel hexagonal plates. The hexagonal shaped designated fuse causes formation of plastic hinges under axial deformation of the brace. The main advantages of this damper compared to conventional metallic dampers and buckling-restrained braces are the stable and controlled energy dissipation capability with ease of manufacture. The mechanical behavior of the damper is formulated first and a design procedure is provided. Next, the theoretical formulation and the efficiency of the damper are verified using finite element (FE) analyses. An analytical model of the damper is established and its efficiency is further investigated by applying it to seismic retrofit of a case study structure. The seismic performance of the structure is evaluated before and after retrofit in terms of maximum interstory drift ratio, top story displacement, residual displacement, and energy dissipation of dampers. Overall, the median of maximum interstory drift ratios is reduced from 3.8% to 1.6% and the residual displacement decreased in the x-direction which corresponds to the predominant mode shape of the structure. The analysis results show that the developed damper can provide cost-effective seismic protection of structures.

Micro-seismic monitoring in mines based on cross wavelet transform

  • Huang, Linqi;Hao, Hong;Li, Xibing;Li, Jun
    • Earthquakes and Structures
    • /
    • 제11권6호
    • /
    • pp.1143-1164
    • /
    • 2016
  • Time Delay of Arrival (TDOA) estimation methods based on correlation function analysis play an important role in the micro-seismic event monitoring. It makes full use of the similarity in the recorded signals that are from the same source. However, those methods are subjected to the noise effect, particularly when the global similarity of the signals is low. This paper proposes a new approach for micro-seismic monitoring based on cross wavelet transform. The cross wavelet transform is utilized to analyse the measured signals under micro-seismic events, and the cross wavelet power spectrum is used to measure the similarity of two signals in a multi-scale dimension and subsequently identify TDOA. The offset time instant associated with the maximum cross wavelet transform spectrum power is identified as TDOA, and then the location of micro-seismic event can be identified. Individual and statistical identification tests are performed with measurement data from an in-field mine. Experimental studies demonstrate that the proposed approach significantly improves the robustness and accuracy of micro-seismic source locating in mines compared to several existing methods, such as the cross-correlation, multi-correlation, STA/LTA and Kurtosis methods.

납-고무받침과 자기유변유체 감쇠기를 이용한 사장교의 내진제어 (Seismic Protection of Cable-stayed Bridges Using LRB and MR Damper)

  • 정형조;박규식;이인원
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2003년도 추계학술대회논문집
    • /
    • pp.241-245
    • /
    • 2003
  • This paper presents the LRB-based hybrid base isolation system employing additional semiactive control devices for seismic protection of cable-stayed bridges by examining the ASCE first generation benchmark problem for a cable-stayed bridge. In this study, ideal magnetorheological dampers (MRDs) are considered as additional semiactive control devices. Numerical simulation results show that the hybrid base isolation system is effective in reducing the structural responses of the benchmark cable-stayed bridge under the historical earthquakes considered. The simulation results also demonstrate that the hybrid base Isolation system employing semiactive MRDs is robust to the stiffness uncertainty of the structure. Therefore, the LRB-based hybrid base isolation system employing MRDs could be appropriate in real applications for full-scale civil infrastructures.

  • PDF

낙교 방지를 위한 받침보호장치의 앵커부 내진성능 (Seismic Performance of the Anchor System of Bearing-protection Devices Preventing the Unseating Failure of Bridges)

  • 정혁창;김민수;박광순;주형석;김익현
    • 한국지진공학회논문집
    • /
    • 제14권6호
    • /
    • pp.45-53
    • /
    • 2010
  • 지진 시 낙교는 교량의 기능을 상실하는 가장 심각한 피해의 하나로서 반드시 피해야 한다. 교량 받침의 파괴로 인한 낙교를 방지하기 위한 방법의 하나로서 국내에서는 받침보호장치가 많이 사용되고 있다. 교량 받침부의 옆의 빈 공간에 설치되어 상부구조로부터 전달되는 지진하중을 부담하여 받침의 파괴를 방지한다. 이러한 받침보호장치가 충분한 내진성능을 발휘하기 위해서는 받침보호장치 본체뿐만 아니라 이를 교량에 고정시키는 앵커부의 강도도 함께 확보되어야 한다. 국내에서는 이들 앵커부의 설계 방법이 확립되지 않아서 받침보호장치의 공급업체가 제공하는 설계도에 따라 시공되어 왔다. 이에 본 연구에서는 베드블록의 높이가 다른 받침보호장치를 대상으로 하여 앵커부의 성능을 실험을 통하여 확인하였고 내진성능을 확보하기 적절한 설계법을 제시하였다.

A design procedure of dissipative braces for seismic upgrading structures

  • Bergami, A.V.;Nuti, C.
    • Earthquakes and Structures
    • /
    • 제4권1호
    • /
    • pp.85-108
    • /
    • 2013
  • The research presented in this paper deals with the seismic protection of existing frame structures by means of passive energy dissipation. A displacement-based procedure to design dissipative bracings for the seismic protection of frame structures is proposed and some applications are discussed. The procedure is based on the displacement based design using the capacity spectrum method, no dynamic non linear analyses are needed. Two performance objective have been considered developing the procedure: protect the structure against structural damage or collapse and avoid non-structural damage as well as excessive base shear. The compliance is obtained dimensioning dissipative braces to limit global displacements and interstorey drifts. Reference is made to BRB braces, but the procedure can easily be extended to any typology of dissipative brace. The procedure has been validated through a comparison with nonlinear dynamic response of two 2D r.c. frames, one bare and one infilled. Finally a real application, on an existing 3D building where dissipative braces available on market are used, is discussed.

Seismic test of modal control with direct output feedback for building structures

  • Lu, Lyan-Ywan
    • Structural Engineering and Mechanics
    • /
    • 제12권6호
    • /
    • pp.633-656
    • /
    • 2001
  • In this paper, modal control with direct output feedback is formulated in a systematic manner for easy implementation. Its application to the seismic protection of structural systems is verified by a shaking table test, which involves a full-scale building model and an active bracing system as the control device. Two modal control cases, namely, one full-state feedback and one direct output feedback control were tested and compared. The experimental result shows that in mitigating the seismic response of building structures, modal control with direct output feedback can be as effective and efficient as that with full-state feedback control. For practical concerns, the control performance of the proposed method in the presence of sensor noise and stiffness modeling error was also investigated. The numerical result shows that although the control force may be increased, the maximum floor displacements of the controlled structure are very insensitive to sensor noise and modeling error.

일반배관용 스테인리스강관에 대한 프레스식 관이음쇠의 내진성능에 관한 연구 (A Study on the Seismic Protection Performance of Press Fittings for Light Gauge Stainless Steel Pipes)

  • 백열선;남준석
    • 한국화재소방학회논문지
    • /
    • 제31권4호
    • /
    • pp.65-70
    • /
    • 2017
  • 본 연구는 최근 수계소화설비 배관에 적용되고 있는 스테인리스 강관용 프레스식 관이음쇠에 대한 내진성능 연구를 수행한다. 연구를 위한 설비의 구성은 NFPA 13의 배관연결방법으로 하였다. 배관의 허용변위량은 건축구조기준에서 제시한 허용량으로 하였고, 반복회수는 10회로 하였다. 실험 후 배관의 Von-mises 응력은 허용응력의 2.48, 1.25배로 NPPs Allowable Stress for Level D service loading의 "허용응력의 3배"인 기준 보다는 적게 나타났다. 따라서 프레스식 관이음쇠는 내진성능을 갖추고 있는 것으로 판단 할 수 있다.

연구용 원자로 이차정지구동장치 수력시스템의 내진검증 (Seismic Qualification Test for SSDM Hydraulic System of Research Reactor)

  • 김상헌;김경호;선종오;조영갑;정택형;김정현;이관희
    • 한국압력기기공학회 논문집
    • /
    • 제12권1호
    • /
    • pp.23-29
    • /
    • 2016
  • The Second Shutdown Drive Mechanism (SSDM) provides an alternate and independent means of reactor shutdown. The Second Shutdown Rods (SSRs) of SSDMs are poised at the top of the core by the hydraulic force driven from a hydraulic system during normal operation. The rods drop by gravity when a trip is commended by a Reactor Protection System, Alternate Protection System, Automatic Seismic Trip System or operator by means of power off solenoid valves of hydraulic system. This paper describes the test results of seismic qualification of a prototype SSDM hydraulic system to demonstrate that its structural integrity and operability (functionality) are maintained during and after seismic excitations, that is, an adequacy of the SSDM design. From the results, this paper shows that the SSDM hydraulic system satisfies all its design requirements without any malfunctions during and after seismic excitations.

Vulnerability assessment of strategic buildings based on ambient vibrations measurements

  • Mori, Federico;Spina, Daniele
    • Structural Monitoring and Maintenance
    • /
    • 제2권2호
    • /
    • pp.115-132
    • /
    • 2015
  • This paper presents a new method for seismic vulnerability assessment of buildings with reference to their operational limit state. The importance of this kind of evaluation arises from the civil protection necessity that some buildings, considered strategic for seismic emergency management, should retain their functionality also after a destructive earthquake. The method is based on the identification of experimental modal parameters from ambient vibrations measurements. The knowledge of the experimental modes allows to perform a linear spectral analysis computing the maximum structural drifts of the building caused by an assigned earthquake. Operational condition is then evaluated by comparing the maximum building drifts with the reference value assigned by the Italian Technical Code for the operational limit state. The uncertainty about the actual building seismic frequencies, typically significantly lower than the ambient ones, is explicitly taken into account through a probabilistic approach that allows to define for the building the Operational Index together with the Operational Probability Curve. The method is validated with experimental seismic data from a permanently monitored public building: by comparing the probabilistic prediction and the building experimental drifts, resulting from three weak earthquakes, the reliability of the method is confirmed. Finally an application of the method to a strategic building in Italy is presented: all the procedure, from ambient vibrations measurement, to seismic input definition, up to the computation of the Operational Probability Curve is illustrated.