• 제목/요약/키워드: Seismic Loads

검색결과 781건 처리시간 0.027초

Seismic performance of Bujian Puzuo considering scale ratio and vertical load effects

  • Yong-Hui Jiang;Jun-Xiao He;Lei Zhu;Lin-Lin Xie;Shuo Fang
    • Structural Engineering and Mechanics
    • /
    • 제90권5호
    • /
    • pp.447-458
    • /
    • 2024
  • This study investigated the influence of scale ratio and vertical load on the seismic performance of Puzuo joints in traditional Chinese timber structures. Three low-cyclic reversed loading tests were conducted on three scaled specimens of Bujian Puzuo in Yingxian Wooden Pagoda. This study focused on the deformation patterns and analyzed seismic performance under varying scale ratios and vertical loads. The results indicated that the slip and rotational deformations of Bujian Puzuo were the primary deformations. The scale of the specimen did not affect the layer where the maximum interlayer slip occurred, but it did decrease the proportion of slip deformation. Conversely, the reducing vertical load caused the layer with the maximum slippage and the position of the damaged Dou components to shift upward, and the proportion of slip deformation increased. When the vertical load was decreased by 3.7 times, the maximum horizontal bearing capacity under positive and negative loadings, initial stiffness, and energy dissipation of the specimen decreased by approximately 60%, 58.79%, 69.62%, and 57.93%, respectively. The horizontal bearing capacity under positive loading and energy dissipation of the specimen increased by 35.63% and 131.54%, when the specimen scale was doubled and the vertical load was increased by 15 times.

Assessment of masonry arch bridges retrofitted by sprayed concrete under in-plane cyclic loading

  • Mahdi Yazdani;Mehrdad Zirakbash
    • Structural Monitoring and Maintenance
    • /
    • 제11권1호
    • /
    • pp.57-70
    • /
    • 2024
  • Masonry arch bridges as a vital infrastructure were not designed for seismic loads. Given that masonry arch bridges are made up of various components, their contribution under the seismic actions can be very undetermined and each of these structural components can play a different role in energy dissipation. Iran is known as a high-risk area in terms of seismic excitations and according to the seismic hazard zoning classification of Iran, most of these railway infrastructures are placed in the high and very high seismicity zones or constructed near the major faults. Besides, these ageing structures are deteriorated and thus in recent years, some of these bridges using various retrofitting approaches, including sprayed concrete technique are strengthened. Therefore, investigating the behavior of these restored structures with new characteristics is very significant. The aim of this study is to investigate the cyclic in-plane performance of masonry arch bridges retrofitted by sprayed concrete technique through the finite element simulation. So, by considering the fill-arch interaction, the nonlinear behavior of a bridge has been investigated. Finally, by extracting the hysteresis and enveloping curves of the retrofitted and non-retrofitted bridge, the effect of strengthening on energy absorption and degradation of material has been investigated.

벽식구조 아파트 리모델링을 위한 전단벽 신설공법의 내진성능 분석 (An Analysis on the seismic Performance of Additional Shear-Wall Construction for the Remodeling of Shear-Wall Type Apartment Buildings)

  • 홍건호;정우경
    • 한국구조물진단유지관리공학회 논문집
    • /
    • 제11권1호
    • /
    • pp.153-162
    • /
    • 2007
  • 1988년 이전에 건설된 벽식 구조 아파트는 내진규정의 적용을 받지 않아 리모델링을 위해서는 현행법규에 적합한 내진보강이 필요하다. 본 연구에서는 벽체 신설 공법에 의한 내진 보강효과를 분석하기 위하여, 개발된 리모델링 건축 평면 내에서 전단벽의 신설이 가능한 위치별 보강 효과와 벽량 및 벽두께의 변화에 따른 내진 보강 효과를 분석하도록 하였다. 내진성능의 평가는 층간 횡 변위를 이용하여 허용 층간변위의 만족여부에 의하여 분석하였으며, 건축물의 구조 모델은 슬래브의 횡 방향 기여도를 고려한 유효보 모델을 사용하였다. 본 연구의 결과에 따르면 리모델링 시 단위 모듈별 내진보강이 가능하며, 전단벽의 신설 위치와 벽량에 따라 건물 건체의 거동에 영향을 받는 것을 확인 할 수 있다.

교량의 기존 받침을 활용하는 내진보강시스템의 유사동적 실험 (The Pseudo-Dynamic Test for the Seismic Retrofit System Utilizing Existing Bridge Bearings)

  • 곽임종;조창백;김영진;곽종원
    • 한국지진공학회논문집
    • /
    • 제11권1호
    • /
    • pp.21-27
    • /
    • 2007
  • 본 연구에서는 교량의 내진보강을 위하여 기존 교량에 지진격리장치를 추가하는 접근법을 제안하였다. 기존 받침을 지진 격리받침으로 완전히 대체하는 접근법도 이미 제안되어 있지만 본 연구에서는 경제성과 안전성을 고려하여 기존 받침을 제거하지 않고 활용하도록 하였다. 이는 지진격리받침이 상부 수직하중을 분담하지 않고, 수평방향의 지진운동에 대한 주기 이동과 감쇠 역할만 한다. 이 접근법의 실험적 검증을 위해 실제 교량을 대상으로 납-적층고무받침(LRB)을 설계하고 실물크기로 기존 받침과 LRB를 제작하였다. 이 지진격리시스템의 가상 지진입력에 대한 응답은 유사동적실험으로 구하였다. 아울러 범용해석프로그램을 통한 지진응답해석과 비교하여 실험결과의 신뢰성을 확인하였다. 실험결과 제안된 지진격리시스템은 지진시 안정적인 거동을 보였다.

건물의 내진보강을 위한 캔틸레버타입 강재댐퍼의 실험 (Experimental study on a Cantilever Type Metallic Damper for Seismic Retrofit of Building Structures)

  • 안태상;김영주;박진화;김형근;장동운;오상훈
    • 한국강구조학회 논문집
    • /
    • 제24권2호
    • /
    • pp.149-161
    • /
    • 2012
  • 최근에 신축 건물이나 기존 건물의 내진보강을 위해서 수동제진장치의 일종인 에너지소산형 제진장치의 사용이 매우 증가하고 있다. 제진장치는 선진국을 중심으로 개발되어 왔고 제한적으로 사용해 오고 있었지만, 최근에는 다소 저렴한 장치개발을 통하여 강진지역의 개발도상국으로도 그 사용이 확대되고 있다. 본 연구는 기존 또는 신축 건물의 내진보강을 위한 캔틸레버타입 강재댐퍼를 개발하고 제안하였다. 댐퍼에 대한 반복가력 실험을 바탕으로 이력거동 및 에너지소산능력을 조사하였다. 실험결과는 제진장치가 안정된 이력특성을 나타내고 있으며 큰 에너지소산능력을 갖고 있음을 보여준다. 실험결과를 바탕으로 댐퍼에 대한 간단한 하중-변위 이력모델을 제안하였다.

Strength upgrading of steel storage rack frames in the down-aisle direction

  • El Kadi, Bassel;Cosgun, Cumhur;Mangir, Atakan;Kiymaz, Guven
    • Steel and Composite Structures
    • /
    • 제23권2호
    • /
    • pp.143-152
    • /
    • 2017
  • This paper focuses on the seismic performance of pallet-type steel storage rack structures in their down aisle direction. As evidenced by experimental research, the seismic response of storage racks in the down-aisle direction is strongly affected by the nonlinear moment-rotation response of the beam-to-column connections. In their down-aisle direction, rack structures are designed to resist lateral seismic loads with typical moment frames utilizing proprietary beam-to-column moment-resisting connections. These connections are mostly boltless hooked type connections and they exhibit significantly large rotations resulting in large lateral frame displacements when subjected to strong ground motions. In this paper, typical hooked boltless beam-to-column connections are studied experimentally to obtain their non-linear reversed cyclic moment-rotation response. Additionally, a compound type connection involving the standard hooks and additional bolts were also tested under similar conditions. The simple introduction of the additional bolts within the hooked connection is considered to be a practical way of structural upgrade in the connection. The experimentally evaluated characteristics of the connections are compared in terms of some important performance indicators such as maximum moment and rotation capacity, change in stiffness and accumulated energy levels within the cyclic loading protocol. Finally, the obtained characteristics were used to carry out seismic performance assessment of rack frames incorporating the tested beam-to-column connections. The assessment involves a displacement based approach that utilizes a simple analytical model that captures the seismic behavior of racks in their down-aisle direction. The results of the study indicate that the proposed method of upgrading appears to be a very practical and effective way of increasing the seismic performance of hooked connections and hence the rack frames in their down-aisle direction.

기초지반강성을 고려한 철골 건축구조물의 비선형 지진해석 (Nonlinear Seismic Analysis of Steel Buildings Considering the Stiffnesses of the Foundation-Soil System)

  • 오영희;김용석
    • 한국강구조학회 논문집
    • /
    • 제18권2호
    • /
    • pp.173-180
    • /
    • 2006
  • 구조물의 지진응답은 기초지반조건의 영향을 받는다. 이 연구에서는 고정지반과 연약지반을 고려한 3, 5, 7층 철골 건축구조물의 밑면전단력을 산정하기 위해 선형 시간이력지진해석과 비선형 Pushover 정적지진해석을 수행하였다. 등가정적강성식으로 구한 기초지반강성은 SAP2000의 Link 요소 중 Damper 요소를 사용하여 입력하였다. 범용구조해석 프로그램 SAP2000에 의한 시간이력으로 구한 철골건축구조물의 밑면전단력을 국내내진설계기준, UBC-97 설계응답스펙트럼, Pushover 정적 비선형해석으로 구한 밑면전단력과 비교하였다. 중력하중과 풍하중으로 설계된 철골 건축구조물은 0.11g의 중진에 대해 탄성응답을 보였고, 탄성 연약지반에서 구조물-지반의 상호작용과 지반 증폭에 의해 구조물의 변위와 밑면전단력이 증가되었다. 따라서, 중약진 지역에서의 건축구조물은 연약지반의 특성을 고려하여 탄성지진해석을 수행하는 것이 더 합리적이다.

낮은 압축력을 받는 철근콘크리트 기둥의 내진성능에 대한 띠철근 상세의 영향 (Effects of Tie Details on Seismic Performance of RC Columns Subjected to Low Compression Loads)

  • 김철구;박홍근;엄태성;김태완
    • 한국지진공학회논문집
    • /
    • 제19권4호
    • /
    • pp.195-205
    • /
    • 2015
  • Various non-seismic tie details are frequently used for one- and two-story small buildings because the seismic demand on their deformation capacities is not relatively significant. To evaluate the effects of the non-seismic tie details on the seismic performance of reinforced concrete columns, six square columns with a cross section of $400{\times}400mm$ and six rectangular columns with a cross section of $250{\times}640mm$ were tested. The anchorage details at both ends and spacing of tie hoops, along with the cross-sectional shape and the magnitude of axial load, were considered as the primary test parameters. Test results showed that square columns had higher stiffness and lower lateral deformation rather than rectangular columns. Both lap spliced tie and U-shaped tie provided comparable or improved seismic performance to $90^{\circ}$ hook tie in terms of maximum strength, ductility, and energy dissipation. The predicted curves with modeling parameters in ASCE41-13 were conservative for test results of lap spliced tie and U-shaped tie specimens since plastic behavior after flexural yielding could not be considered. For economical design, ASCE41-13 should be revised with various test results of tie details.

Seismic behavior of non-seismically designed eccentric reinforced concrete beam-column joints

  • Liu, Ying;Wong, Simon H.F.;Zhang, Hexin;Kuang, J.S.;Lee, Pokman;Kwong, Winghei
    • Earthquakes and Structures
    • /
    • 제21권6호
    • /
    • pp.613-625
    • /
    • 2021
  • Non-seismically designed eccentric reinforced concrete beam-column joints were extensively used in existing reinforced concrete frame buildings, which were found to be vulnerable to seismic action in many incidences. To provide a fundamental understanding of the seismic performance and failure mechanism of the joints, three 2/3-scale exterior beam-column joints with non-seismically designed details were cast and tested under reversed cyclic loads simulating earthquake excitation. In this investigation, particular emphasis was given on the effects of the eccentricity between the centerlines of the beam and the column. It is shown that the eccentricity had significant effects on the damage characteristics, shear strength, and displacement ductility of the specimens. In addition, shear deformation and the strain of joint hoops were found to concentrate on the eccentric face of the joint. The results demonstrated that the specimen with an eccentricity of 1/4 column width failed in a brittle manner with premature joint shear failure, while the other specimens with less or no eccentricity failed in a ductile manner with joint shear failure after beam flexural yielding. Test results are compared with those predicted by three seismic design codes and two non-seismic design codes. In general, the codes do not accurately predict the shear strength of the eccentric joints with non-seismic details.

E-Isolation : High-performance Dynamic Testing Installation for Seismic Isolation Bearings and Damping Devices

  • Yoshikazu Takahashi;Toru Takeuchi;Shoichi Kishiki;Yozo Shinozaki;Masako Yoneda;Koichi Kajiwara;Akira Wada
    • 국제초고층학회논문집
    • /
    • 제12권1호
    • /
    • pp.93-105
    • /
    • 2023
  • Seismic isolation and vibration control techniques have been developed and put into practical use by challenging researchers and engineers worldwide since the latter half of the 20th century, and after more than 40 years, they are now used in thousands of buildings, private residences, highways in many seismic areas in the world. Seismic isolation and vibration control structures can keep the structures undamaged even in a major earthquake and realize continuous occupancy. This performance has come to be recognized not only by engineers but also by ordinary people, becoming indispensable for the formation of a resilient society. However, the dynamic characteristics of seismically isolated bearings, the key elements, are highly dependent on the size effect and rate-of-loading, especially under extreme loading conditions. Therefore, confirming the actual properties and performance of these bearings with full-scale specimens under prescribed dynamic loading protocols is essential. The number of testing facilities with such capacity is still limited and even though the existing labs in the US, China, Taiwan, Italy, etc. are conducting these tests, their dynamic loading test setups are subjected to friction generated by the large vertical loads and inertial force of the heavy table which affect the accuracy of measured forces. To solve this problem, the authors have proposed a direct reaction force measuring system that can eliminate the effects of friction and inertia forces, and a seismic isolation testing facility with the proposed system (E-isolation) will be completed on March 2023 in Japan. This test facility is designed to conduct not only dynamic loading tests of seismic isolation bearings and dampers but also to perform hybrid simulations of seismically isolated structures. In this paper, design details and the realization of this system into an actual dynamic testing facility are presented and the outcomes are discussed.