• 제목/요약/키워드: Seismic Isolation Bearings

검색결과 139건 처리시간 0.022초

New approach in design of seismic isolated buildings applying clusters of rubber bearings in isolation systems

  • Melkumyan, Mikayel G.
    • Earthquakes and Structures
    • /
    • 제4권6호
    • /
    • pp.587-606
    • /
    • 2013
  • The given paper presents a new approach in design of seismic isolation systems of base isolated buildings. The idea is to install not one big size rubber bearing under the columns and/or shear walls, or one by one with certain spacing under the load-bearing walls, but to install a group/cluster of small size bearings, in order to increase the overall effectiveness of the isolation system. The advantages of this approach are listed and illustrated by the examples. Also the results of analyses of some buildings where the approach on installation of clusters of rubber bearings was used in their isolation systems are given for two cases: i) when the analyses are carried out based on the provisions of the Armenian Seismic Code, and ii) when the time history analyses are carried out. Obtained results are compared and discussed. Paper also presents, as an example, detailed analysis and design of the 18-story unique building in one of the residential complexes in Yerevan. Earthquake response analyses of this building were carried out in two versions, i.e. when the building is base isolated and when it is fixed base. Several time histories were used in the analyses. Comparison of the obtained results indicates the high effectiveness of the proposed structural concepts of isolation systems and the need for further improvement of the Seismic Code provisions regarding the values of the reduction factors. A separate section in the paper dedicated to the design of high damping laminated rubber-steel bearings and to results of their tests.

StLRB 지진격리장치를 적용한 교량의 거동특성과 비교분석 (Response Characters of Bridge Adopting StLRB)

  • 최승호;한경봉;박선규
    • 한국구조물진단유지관리공학회 논문집
    • /
    • 제8권1호
    • /
    • pp.139-146
    • /
    • 2004
  • 본 논문에서는 실제 교량에 지진격리장치를 적용하였을 때, 교량의 내진성능을 평가하기 위한 지진해석과 모델링 방법에 대하여 논하였다. 상용유한요소 해석 프로그램을 이용하여 비선형 시간이력 해석을 수행하였으며, 지진해석을 위하여 El Centro 지진 이력을 (1940, N00W) 사용하였다. 기존 받침을 적용한 경우와 여러 가지 지진격리장치를 적용한 경우로 나누어 해석하였으며, 교량의 변위와 교각의 변형 및 교각 하단부의 전단력과 모멘트를 상대 비교하였다. 해석 결과 지진격리 장치를 사용한 경우 기존 받침을 적용한 교량보다 지진시 거동이 훨씬 안정적으로 나타났으며, 특히 StLRB를 적용한 경우 받침의 마찰과 STU의 강절거동 효과로 인하여 보다 높은 지진력 감소효과가 있음을 알 수 있었다.

A Feasibility Study of Seismic Isolation for Wolsong Reactor Building

  • Kim, Kang-Soo;Kim, Tae-Wan;Lee, Jeong-Yoon
    • Nuclear Engineering and Technology
    • /
    • 제30권2호
    • /
    • pp.83-90
    • /
    • 1998
  • To predict effects of seismic isolation, seismic isolation bearings were applied to the Wolsong reactor building and the analytical study was performed. For this study, the Wolsong reactor building was modeled using lumped masses and beam elements. Design Basis Earthquake with a ground acceleration of 0.2g was applied. And then, the behavior of the isolated structure was compared with that of the unisolated structure. The horizontal response acceleration at the top of the unisolated reactor building was 0.99g, while that of the isolated one was 0.14g(15% damping) and the acceleration response along the height of the structure was constant. The maximum displacement of the unisolated structure was 8.3mm, while that of the isolated structure was 66mm. The application of isolation bearings on the reactor building reduces seismic loads but increases the displacement of the structure on a large scale. Therefore, when using isolation bearings, the reactor building and BOP should be located on a common mat to cover the large displcement.

  • PDF

E-Isolation : High-performance Dynamic Testing Installation for Seismic Isolation Bearings and Damping Devices

  • Yoshikazu Takahashi;Toru Takeuchi;Shoichi Kishiki;Yozo Shinozaki;Masako Yoneda;Koichi Kajiwara;Akira Wada
    • 국제초고층학회논문집
    • /
    • 제12권1호
    • /
    • pp.93-105
    • /
    • 2023
  • Seismic isolation and vibration control techniques have been developed and put into practical use by challenging researchers and engineers worldwide since the latter half of the 20th century, and after more than 40 years, they are now used in thousands of buildings, private residences, highways in many seismic areas in the world. Seismic isolation and vibration control structures can keep the structures undamaged even in a major earthquake and realize continuous occupancy. This performance has come to be recognized not only by engineers but also by ordinary people, becoming indispensable for the formation of a resilient society. However, the dynamic characteristics of seismically isolated bearings, the key elements, are highly dependent on the size effect and rate-of-loading, especially under extreme loading conditions. Therefore, confirming the actual properties and performance of these bearings with full-scale specimens under prescribed dynamic loading protocols is essential. The number of testing facilities with such capacity is still limited and even though the existing labs in the US, China, Taiwan, Italy, etc. are conducting these tests, their dynamic loading test setups are subjected to friction generated by the large vertical loads and inertial force of the heavy table which affect the accuracy of measured forces. To solve this problem, the authors have proposed a direct reaction force measuring system that can eliminate the effects of friction and inertia forces, and a seismic isolation testing facility with the proposed system (E-isolation) will be completed on March 2023 in Japan. This test facility is designed to conduct not only dynamic loading tests of seismic isolation bearings and dampers but also to perform hybrid simulations of seismically isolated structures. In this paper, design details and the realization of this system into an actual dynamic testing facility are presented and the outcomes are discussed.

액체금속로 면진설계를 위한 지침서 개발 (Development of Guidelines for seismic isolation Design of LMR)

  • 유봉;구경회;이재한
    • 한국지진공학회:학술대회논문집
    • /
    • 한국지진공학회 1998년도 춘계 학술발표회 논문집 Proceedings of EESK Conference-Spring 1998
    • /
    • pp.147-154
    • /
    • 1998
  • The purpose of this paper is to propose the draft guidelines of seismic isolation design of Liquid Metal Reactor (LMR) using high damping laminated rubber bearings. The scopes of guidelines include design requirements of a seismically isolated system and components, seismic isolator, isolation system, interface system between seismic isolation and non-seismic isolation part, qualification and acceptance tests of seismic isolator, seismic isolation reliability, and seismic safety and monitoring system. Proposed guidelines shall be revised to extend to general design guideline for nuclear facilities by further research and discussions.

  • PDF

납 면진받침을 적용한 건축물의 내진 설계 (Seismic Design of Building Using LRB(Lead Rubber Bearing))

  • 김두훈
    • 한국지진공학회:학술대회논문집
    • /
    • 한국지진공학회 1998년도 추계 학술발표회 논문집 Proceedings of EESK Conference-Spring 1998
    • /
    • pp.258-265
    • /
    • 1998
  • Seismic isolation has developed to the point where it may be considered as a viable design alternate for a wide range of building structures. However, it needs to consider various aspects to adopt a suitable isolation system for buildings practically. This report presents the basis for the preliminary design procedure which has been developed for the seismic isolation system using the lead rubber bearings. The design procedures have been developed to ensure that the bearings will safely support the maximum gravity load throughout the life of the structure while they provide a period shift and hysteretic damping during the design earthquake.

  • PDF

기초분리설계를 위한 탄성받침의 동적거동 (Dynamic Behaviour of the LRB for Seismic Isolation Design)

  • 임정순;이희목
    • 한국구조물진단유지관리공학회 논문집
    • /
    • 제4권3호
    • /
    • pp.137-144
    • /
    • 2000
  • Judging from the occasional occurrences of minor and major earthquakes in Korean peninsula, it is generally considered that Korean peninsula is not located in safe zone from earthquake any more. The worldwide damages from earthquake in public buildings such as bridges are also urging the necessity for an appropriate earthquake proof action. The elastomeric bearings have been used in seismic isolation design of bridges. and elastomeric bearings are quite ideal ones which allow movement and rotation in all directions without restraining superstruture. Within the limits of this study on dynamic behavior of the LBR for seismic isolation design, the reaearch results revealed that the Laminated Rubber Bearing(LRB) is useful in bridges for seismic isolation design. In addition, the relationship between the shape factor and compressive strength is linear. It was also found that the compressive strength gets higher as the shape factor increases.

  • PDF

SEISMIC ISOLATION OF NUCLEAR POWER PLANTS

  • Whittaker, Andrew S.;Kumar, Manish;Kumar, Manish
    • Nuclear Engineering and Technology
    • /
    • 제46권5호
    • /
    • pp.569-580
    • /
    • 2014
  • Seismic isolation is a viable strategy for protecting safety-related nuclear structures from the effects of moderate to severe earthquake shaking. Although seismic isolation has been deployed in nuclear structures in France and South Africa, it has not seen widespread use because of limited new build nuclear construction in the past 30 years and a lack of guidelines, codes and standards for the analysis, design and construction of isolation systems specific to nuclear structures. The funding by the United States Nuclear Regulatory Commission of a research project to the Lawrence Berkeley National Laboratory and MCEER/University at Buffalo facilitated the writing of a soon-to-be-published NUREG on seismic isolation. Funding of MCEER by the National Science Foundation led to research products that provide the technical basis for a new section in ASCE Standard 4 on the seismic isolation of safety-related nuclear facilities. The performance expectations identified in the NUREG and ASCE 4 for seismic isolation systems, and superstructures and substructures are described in the paper. Robust numerical models capable of capturing isolator behaviors under extreme loadings, which have been verified and validated following ASME protocols, and implemented in the open source code OpenSees, are introduced.

Testing of rubber bearings for the dynamic damper of seismic isolated buildings

  • Melkumyan, Mikayel;Hakobyan, Alexander
    • Smart Structures and Systems
    • /
    • 제2권4호
    • /
    • pp.321-328
    • /
    • 2006
  • The paper describes the testing facilities and the methodology on testing of laminated rubber bearings envisaged for application in the system of Dynamic Damper (DD) of seismic isolated buildings, as well as the obtained results. For the first time in Armenia laminated rubber bearings were tested simultaneously under the action of horizontal shear force and vertical tension force. The test results have proven the possibility of using rubber bearings as elements subjected to tension due to action of the mass of DD. Also it was confirmed that the suggested structural concept of DD for reducing the displacements and shear forces of seismic isolation systems will have reliable behavior during the design level earthquakes.

주상 복합 구조물에 적용된 중간층 면진 시스템의 성능 검토 (Control Performance Evaluation of Mid-Story Isolation System for Residence-Commerce Complex Building)

  • 박광섭;김윤태;김현수
    • 한국공간구조학회논문집
    • /
    • 제19권3호
    • /
    • pp.33-40
    • /
    • 2019
  • A seismic isolation system is one of the most effective control devices used for mitigating the structural responses due to earthquake loads. This system is generally used as a type of base isolation system for low- and mid-rise building structures. If the base isolation technique is applied to high-rise buildings, a lot of problems may be induced such as the movement of isolation bearings during severe wind loads, the stability problem of bearings under large compression forces. Therefore, a mid-story isolation system was proposed for seismic protection of high-rise buildings. Residence-commerce complex buildings in Korea have vertical irregularity because shear wall type and frame type structures are vertically connected. This problem can be also solved by the mid-story isolation system. An effective analytical method using super elements and substructures was proposed in this study. This method was used to investigate control performance of mid-story isolation system for residence-commerce complex buildings subjected to seismic loads. Based on numerical analyses, it was shown that the mid-story isolation system can effectively reduce seismic responses of residence-commerce complex tall buildings.