• 제목/요약/키워드: Seismic Hazard Analysis

검색결과 248건 처리시간 0.024초

조건부스펙트럼을 적용한 원전 격납건물의 비선형 동적 해석 기반 지진취약도평가 (Application of Conditional Spectra to Seismic Fragility Assessment for an NPP Containment Building based on Nonlinear Dynamic Analysis)

  • 신동현;박지훈;전성하
    • 한국지진공학회논문집
    • /
    • 제25권4호
    • /
    • pp.179-189
    • /
    • 2021
  • Conditional spectra (CS) are applied to the seismic fragility assessment of a nuclear power plant (NPP) containment building for comparison with a relevant conventional uniform hazard response spectrum (UHRS). Three different control frequencies are considered in developing conditional spectra. The contribution of diverse magnitudes and epicentral distances is identified from deaggregation for the UHRS at a control frequency and incorporated into the conditional spectra. A total of 30 ground motion records are selected and scaled to simulate the probability distribution of each conditional spectra, respectively. A set of lumped mass stick models for the containment building are built considering nonlinear bending and shear deformation and uncertainty in modeling parameters using the Latin hypercube sampling technique. Incremental dynamic analysis is conducted for different seismic input models in order to estimate seismic fragility functions. The seismic fragility functions and high confidence of low probability of failure (HCLPF) are calculated for different seismic input models and analyzed comparatively.

Seismic Reliability Assessment of Mid- and High-rise Post-tensioned CLT Shear Wall Structures

  • Sun, Xiaofeng;Li, Zheng;He, Minjuan
    • 국제초고층학회논문집
    • /
    • 제9권2호
    • /
    • pp.175-185
    • /
    • 2020
  • Currently, few studies have been conducted to comprehend the seismic reliability of post-tensioned (PT) CLT shear wall structures, due to the complexity of this kind of structural system as well as due to lack of a reliable structural model. In this paper, a set of 4-, 8-, 12-, and 16-storey benchmark PT CLT shear wall structures (PT-CLTstrs) were designed using the direct displacement-based design method, and their calibrated structural models were developed. The seismic reliability of each PT-CLTstr was assessed based on the fragility analysis and based on the response surface method (RSM), respectively. The fragility-based reliability index and the RSM-based reliability index were then compared, for each PT-CLTstr and for each seismic hazard level. Results show that the RSM-based reliabilities are slightly less than the fragility-based reliabilities. Overall, both the RSM and the fragility-based reliability method can be used as efficient approaches for assessing the seismic reliabilities of the PT-CLTstrs. For these studied mid- and high-rise benchmark PT-CLTstrs, following their fragility-based reliabilities, the 8-storey PT-CLTstr is subjected to the least seismic vulnerability; while, following their RSM-based reliabilities, the 4-storey PT-CLTstr is subjected to the least seismic vulnerability

Seismic reliability evaluation of steel-timber hybrid shear wall systems

  • Li, Zheng;He, Minjuan;Lam, Frank;Zhou, Ruirui;Li, Minghao
    • Earthquakes and Structures
    • /
    • 제13권3호
    • /
    • pp.289-297
    • /
    • 2017
  • This paper presents seismic performance and reliability evaluation on steel-timber hybrid shear wall systems composed of steel moment resisting frames and infill light frame wood shear walls. Based on experimental observations, damage assessment was conducted to determine the appropriate damage-related performance objectives for the hybrid shear wall systems. Incremental time-history dynamic analyses were conducted to establish a database of seismic responses for the hybrid systems with various structural configurations. The associated reliability indices and failure probabilities were calculated by two reliability methods (i.e., fragility analysis and response surface method). Both methods yielded similar estimations of failure probabilities. This study indicated the greatly improved seismic performance of the steel-timber hybrid shear wall systems with stronger infill wood shear walls. From a probabilistic perspective, the presented results give some insights on quantifying the seismic performance of the hybrid system under different seismic hazard levels. The reliability-based approaches also serve as efficient tools to assess the performance-based seismic design methodology and calibration of relative code provisions for the proposed steel-timber hybrid shear wall systems.

The investigation of seismic performance of existing RC buildings with and without infill walls

  • Dilmac, Hakan;Ulutas, Hakan;Tekeli, Hamide;Demir, Fuat
    • Computers and Concrete
    • /
    • 제22권5호
    • /
    • pp.439-447
    • /
    • 2018
  • One of the important factors is the infill walls in the change of the structural rigidity, ductility, dynamic and static characteristics of the structures. The infill walls are not generally included in numerical analysis of reinforced concrete (RC) structural system due to lack of suitable theory and the difficulty of calculating the recommended models. In seismic regions worldwide, the residential structures are generally RC buildings with infill wall. Therefore, understanding the contribution of the infill walls to seismic performance of buildings may have a vital importance. This paper investigates the effects of infill walls on seismic performance of the existing RC residential buildings by considering requirements of the Turkish Earthquake Code (TEC). Seismic performance levels of residential RC buildings with and without walls in high-hazard zones were determined according to the nonlinear procedure given in the code. Pushover curves were obtained by considering the effect of masonry infill walls on seismic performance of RC buildings. The analysis results showed that the infill walls beneficially effected to the rigidity, roof displacements and seismic performance of the building.

Performance-based earthquake engineering methodology for seismic analysis of nuclear cable tray system

  • Huang, Baofeng
    • Nuclear Engineering and Technology
    • /
    • 제53권7호
    • /
    • pp.2396-2406
    • /
    • 2021
  • The Pacific Earthquake Engineering Research (PEER) Center has been developing a performance-based earthquake engineering (PBEE) methodology, which is based on explicit determination of performance, e.g., monetary losses, in a probabilistic manner where uncertainties in earthquake ground motion, structural response, damage estimation, and losses are explicitly considered. To carry out the PEER PBEE procedure for a component of the nuclear power plant (NPP) such as the cable tray system, hazard curve and spectra were defined for two hazard levels of the ground motions, namely, operation basis earthquake, and safe shutdown earthquake. Accordingly, two sets of spectral compatible ground motions were selected for dynamic analysis of the cable tray system. In general, the PBEE analysis of the cable tray in NPP was introduced where the resulting floor motions from the time history analysis (THA) of the NPP structure should be used as the input motion to the cable tray. However, for simplicity, a finite element model of the cable tray was developed for THA under the effect of the selected ground motions. Based on the structural analysis results, fragility curves were generated in terms of specific engineering demand parameters. Loss analysis was performed considering monetary losses corresponding to the predefined damage states. Then, overall losses were evaluated for different damage groups using the PEER PBEE methodology.

원자력 발전소 부지에 대한 확률론적 지진해일 재해도 분석의 적용 (Application of Probabilistic Tsunami Hazard Analysis for the Nuclear Power Plant Site)

  • 이현미;김민규;신동훈;최인길
    • 한국지진공학회논문집
    • /
    • 제19권6호
    • /
    • pp.265-271
    • /
    • 2015
  • The tsunami hazard analysis is performed for testing the application of probabilistic tsunami hazard analysis to nuclear power plant sites in the Korean Peninsula. Tsunami hazard analysis is based on the seismic hazard analysis. Probabilistic method is adopted for considering the uncertainties caused by insufficient information of tsunamigenic fault sources. Logic tree approach is used. Uljin nuclear power plant (NPP) site is selected for this study. The tsunamigenic fault sources in the western part of Japan (East Sea) are used for this study because those are well known fault sources in the East Sea and had several records of tsunami hazards. We have performed numerical simulations of tsunami propagation for those fault sources in the previous study. Therefore we use the wave parameters obtained from the previous study. We follow the method of probabilistic tsunami hazard analysis (PTHA) suggested by the atomic energy society of Japan (AESJ). Annual exceedance probabilities for wave height level are calculated for the site by using the information about the recurrence interval, the magnitude range, the wave parameters, the truncation of lognormal distribution of wave height, and the deviation based on the difference between simulation and record. Effects of each parameters on tsunami hazard are tested by the sensitivity analysis, which shows that the recurrence interval and the deviation dominantly affects the annual exceedance probability and the wave heigh level, respectively.

Evaluation of performance and seismic parameters of eccentrically braced frames equipped with dual vertical links

  • Mohsenian, Vahid;Nikkhoo, Ali
    • Structural Engineering and Mechanics
    • /
    • 제69권6호
    • /
    • pp.591-605
    • /
    • 2019
  • Investigations on seismic performance of eccentrically braced frames equipped with dual vertical links have received little attention. Therefore, the main goal of this paper is to describe design steps for such frames and evaluate nonlinear performance of this system according to the reliability analysis. In this study, four and eight story frame structures are analyzed and the response modification factors for different intensity and damage levels are derived in a matrix form based on a new approach. According to the obtained results, the system has high ductility and acceptable seismic performance. Moreover, it is concluded that using response modification factor equal to 8 in the design of system provides desirable seismic reliability under the design and maximum probable hazard levels. Due to desirable performance and significant advantages of the dual vertical links, this system can be used as a main lateral load bearing system, in addition to its application for rehabilitation of damaged structures.

확률론적 내진성능평가를 위한 다자유도 교량구조물의 지진취약도해석 (Seismic Fragility Analysis for Probabilistic Seismic Performance Evaluation of Multi-Degree-of-Freedom Bridge Structures)

  • 김학수;송종걸
    • 한국방재학회:학술대회논문집
    • /
    • 한국방재학회 2008년도 정기총회 및 학술발표대회
    • /
    • pp.269-272
    • /
    • 2008
  • 구조물의 지진취약도곡선은 임의의 크기를 가진 지진에 대하여 구조물에 어느 규모이상의 손상이 발생할 확률을 의미하는 것으로 구조물의 내진성능평가 및 손실평가 하는데 아주 중요하다. 본 논문은 선진국의 지진취약도 추정기법을 분석하여 국내 실정에 적합한 지진취약도 추정 기법을 확립하기 위한 연구방법론을 제시하는 데 그 목적이 있다. 이를 위해 우선 지진취약도함수의 개발현황을 조사하였다. 그 다음 이러한 평가방법을 국내에 적용하기 위하여 국내의 교량구조물을 분류하였다. 마지막으로는 PSC Box 거더교에 대해서 지진취약도곡선을 평가하였다. 평가 결과 구조물의 분류와 손상상태는 구조물의 손상평가와 지진취약도해석에 아주 큰 영향을 미치는 것을 확인할 수 있었다.

  • PDF

빅데이터 지반정보의 불확실성을 고려한 중진지역에서의 액상화 위험도 작성기법 개발 (Development of Mapping Method for Liquefaction Hazard in Moderate Seismic Region Considering the Uncertainty of Big Site Investigation Data)

  • 곽민정;구태진;최재순
    • 한국지반환경공학회 논문집
    • /
    • 제16권1호
    • /
    • pp.17-27
    • /
    • 2015
  • 최근 우리 정부는 안전한 대한민국이라는 슬로건 아래 지진재해를 포함한 자연재해피해를 최소화하는데 많은 노력을 집중하고 있으며, 이를 위해 산사태 위험도와 액상화 위험도와 같은 지진 시 지반피해 GIS 시스템 데이터가 구축되고 있는 실정이다. 우리나라 전역을 포함하는 지진 시 액상화 위험도를 작성하기 위해서는 수많은 지반시추정보에 대한 적용성 검토가 필요하다. 본 연구에서는 액상화 위험도 작성을 위해 인구밀도가 높은 광역지역의 지반증폭계수를 검토하였으며 이를 위해 S시 522개 시추공지반 정보를 수집하여 지반응답해석을 수행하였다. 이때 지반분류는 지반정보의 불확실성을 고려하고자 현행 내진 설계기준에서 제안하고 있는 시추종료 깊이 이후의 지반 정보를 30m로 가정하는 경우와 지반정보의 오리지널 데이터 값만을 이용하는 경우로 나누어 비교하였으며, 타당성 검토 시에는 지반응답해석 결과에 대한 확률분포와 통계분석을 이용하여 수행하였다. 최종적으로 정규분포를 통한 신뢰도 50%, 70%, 90%에 대한 지반증폭계수를 도출하여 액상화 위험도를 도시하였으며, 이를 지반응답해석을 통해 도시한 LPI 액상화 위험도와 비교하여 가장 유사한 값을 추천하였다. 연구결과 제안된 지반증폭계수가 향후 국내 액상화에 대한 연구와 중진지역의 광역지역 액상화 위험도 작성에 큰 도움이 될 수 있을 것으로 기대한다.

Simplified procedure for seismic analysis of base-isolated structures

  • Serror, Mohammed H.;El-Gazzar, Sherif O.;Mourad, Sherif A.
    • Earthquakes and Structures
    • /
    • 제8권5호
    • /
    • pp.1091-1111
    • /
    • 2015
  • Base isolation is an effective method for protecting structures against earthquake hazard. It elongates the period of vibration and introduces supplemental damping to the structural system. The stiffness, damping and displacement are coupled forcing the code seismic design procedure to be unnecessarily complicated. In addition, the force reduction factor -a key parameter in the design procedurehas not been well addressed by seismic design codes at the high levels of damping due to the pronounced difference between pseudo and actual accelerations. In this study, a comparison has been conducted to evaluate eight different methods, in the literature, for calculating the force reduction factor due to damping. Accordingly, a simplified seismic analysis procedure has been proposed based on the well documented N2 method. Comprehensive analysis has been performed for base-isolated structure models for direct application and verification of the proposed procedure. The results have been compared with those of the European code EC8, the nonlinear time history analysis and investigations in the literature, where good agreement has been reported. In addition, a discussion has been elaborated for the resulted response of the base-isolated structure models with respect to the dynamic characteristics of the base isolation system.