• Title/Summary/Keyword: Seismic Hazard

Search Result 430, Processing Time 0.023 seconds

The effects of construction practices on the seismic performance of RC frames with masonry infills

  • Lagaros, Nikos D.;Geraki, Martha A.
    • Structural Engineering and Mechanics
    • /
    • v.28 no.1
    • /
    • pp.69-88
    • /
    • 2008
  • A number of construction practices, implemented during the design process of a reinforced concrete (RC) structural system, may have significant consequences on the behaviour of the structural system in the case of earthquake loading. Although a number of provisions are imposed by the contemporary Greek national design codes for the seismic design of RC structures, in order to reduce the consequences, the influence of the construction practices on the seismic behaviour of the structural system remains significant. The objective of this work is to perform a comparative study in order to examine the influence of three, often encountered, construction practices namely weak ground storey, short and floating columns and two combinations on the seismic performance of the structural system with respect to the structural capacity and the maximum interstorey drifts in three earthquake hazard levels.

Incorporating nonstructural finish effects and construction quality in a performance-based framework for wood shearwall design

  • Kim, Jun Hee;Rosowsky, David V.
    • Structural Engineering and Mechanics
    • /
    • v.21 no.1
    • /
    • pp.83-100
    • /
    • 2005
  • This paper presents results from a study to extend a performance-based shearwall selection procedure to take into account the contributions of nonstructural finish materials (such as stucco and gypsum wallboard), construction quality issues, and their effects on the displacement performance of engineered wood shearwalls subject to seismic loading. Shearwall performance is evaluated in terms of peak displacements under seismic loading (characterized by a suite of ordinary ground motion records) considering different combinations of performance levels (drift limits) and seismic hazard. Shearwalls are analyzed using nonlinear dynamic time-history analysis with global assembly hysteretic parameters determined by fitting to actual shearwall test data. Peak displacement distributions, determined from sets of analyses using each of the ground motion records taken to characterize the seismic hazard, are postprocessed into performance curves, design charts, and fragility curves which can be used for risk-based design and assessment applications.

Domestic Seismic Design Maps Based on Risk-Targeted Maximum- Considered Earthquakes (위험도기반 최대예상지진에 근거한 국내 내진설계 지도)

  • Shin, Dong Hyeon;Kim, Hyung-Joon
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.19 no.3
    • /
    • pp.93-102
    • /
    • 2015
  • This study evaluates collapse probabilities of structures which are designed according to a domestic seismic design code, KBC2009. In evaluating their collapse probabilities, to do this, probabilistic distribution models for seismic hazard and structural capacity are required. In this paper, eight major cities in Korea are selected and the demand probabilistic distribution of each city is obtained from the uniform seismic hazard. The probabilistic distribution for the structural capacity is assumed to follow a underlying design philosophy implicitly defined in ASCE 7-10. With the assumptions, the structural collapse probability in 50 years is evaluated based on the concept of a risk integral. This paper then defines an mean value of the collapse probabilities in 50 years of the selected major cities as the target risk. Risk-targeted spectral accelerations are finally suggested by modifying a current mapped spectral acceleration to meet the target risk.

Seismic microzonation of Kolkata

  • Shiuly, Amit;Sahu, R.B.;Mandal, Saroj
    • Geomechanics and Engineering
    • /
    • v.9 no.2
    • /
    • pp.125-144
    • /
    • 2015
  • This paper presents the probabilistic seismic microzonation of densely populated Kolkata city, situated on the world's largest delta island with very soft alluvial soil deposit. At first probabilistic seismic hazard analysis of Kolkata city was carried out at bedrock level and then ground motion amplification due to sedimentary deposit was computed using one dimensional (1D) wave propagation analysis SHAKE2000. Different maps like fundamental frequency, amplification at fundamental frequency, peak ground acceleration (PGA), peak ground velocity (PGV), peak ground displacement (PGD), maximum response spectral acceleration at different time period bands are developed for variety of end users, structural and geotechnical engineers, land use planners, emergency managers and awareness of general public. The probabilistically predicted PGA at bedrock level is 0.12 g for 50% exceedance in 50 years and maximum PGA at surface level it varies from 0.095 g to 0.18 g for same probability of exceedance. The scenario of simulated ground motion revealed that Kolkata city is very much prone to damage during earthquake.

Improved Evaluation for the Seismic Capacity of Concrete Gravity Dams (콘크리트 중력식 댐의 향상된 내진성능 평가방법)

  • Kim, Yon-Gon;Kwon, Hyek-Kee
    • Journal of the Korean Society of Hazard Mitigation
    • /
    • v.4 no.1 s.12
    • /
    • pp.1-14
    • /
    • 2004
  • The objective of this study is firstly to frame up the seismic safety of concrete gravity dams. It is necessary to analyze seismic response and evaluate seismic performance of concrete gravity dams during earthquake. In this study, seismic damage and dynamic analysis of concrete gravity dams using structural analysis package such as SAP2000 and MIDAS were performed. Additional dynamic water pressure due to earthquake considered as additional mass for numerical seismic analysis. According detailed analysis, the vibration through the dam structure (transverse to water flow) seems to be very critical depending on the shape of the dam. For more precise evaluation of seismic fragility of concrete gravity dams, further research is still needed.

An extended cloud analysis method for seismic fragility assessment of highway bridges

  • Sfahani, Mohammad Ghalami;Guan, Hong
    • Earthquakes and Structures
    • /
    • v.15 no.6
    • /
    • pp.605-616
    • /
    • 2018
  • In this paper, an extended Cloud analysis method is developed for seismic fragility assessment of existing highway bridges in the southeast Queensland region. This method extends the original Cloud analysis dataset by performing scaled Cloud analyses. The original and scaled Cloud datasets are then paired to generate seismic fragility curves. The seismic hazard in this region is critically reviewed, and the ground motion records are selected for the time-history analysis based on various record selection criteria. A parametric highway bridge model is developed in the OpenSees analysis software, and a sampling technique is employed to quantify the uncertainties of highway bridges ubiquitous in this region. Technical recommendations are also given for the seismic performance evaluation of highway bridges in such low-to-moderate seismic zones. Finally, a probabilistic fragility study is conducted by performing a total of 8000 time-history analyses and representative bridge fragility curves are generated. It is illustrated that the seismic fragility curves generated by the proposed extended Cloud analysis method are in close agreement with those which are obtained by the rigorous incremental dynamic analysis method. Also, it reveals that more than 50% of highway bridges existing in southeast Queensland will be damaged subject to a peak ground acceleration of 0.14 g.

An Analysis of the Sensitivity of Input Parameters for the Seismic Hazard Analysis in the Korean Peninsula (한반도 지진위험도 산출을 위한 입력 파라메타의 민감도 분석)

  • Kim, Min-Ju;Kyung, Jai-Bok
    • Journal of the Korean earth science society
    • /
    • v.36 no.4
    • /
    • pp.351-359
    • /
    • 2015
  • This study is to analyze the sensitivity for the parameters (a and b values, $M_{max}$, attenuation formula, and seismo-tectonic model) which are essential for the seismic hazard map. The values of each parameter were suggested by 10 members of the expert group. The results show that PGA increases as a value and $M_{max}$ become larger and as b value smaller. Big impact on the seismic hazard is observed for attenuation formula, a and b values although there is little impact on $M_{max}$ and seismo-tectonic model. These parameters with big impact require careful consideration for obtaining adequate values that well reflects the seismic characteristics of the Korean peninsula.

Progress in Seismic Design Concept in Moderate Seismicity Regions (중약진 지역에서의 내진설계 개념의 발전동향)

  • Jang, Seung-Pil;Kim, Jae-Gwan
    • 도로교통
    • /
    • s.76
    • /
    • pp.2-7
    • /
    • 1999
  • Seismic design in low to moderate seismic regions has to be based on the characteristics of seismic risk, ground motion and structural response in that region. The characteristics of seismic hazard in low to moderate seismic regions are reviewed briefly. The recent findings on the dynamic behavior subjected to the moderate intensity level of ground motion are summarized. The seismic design considerations in Eastern America, China, Australia, Thailand and Hong Kong will be introduced. The effort to adopt the limited ductility design in low to moderate seismicity regions will be reported. Finally research works that are required for the implementation of the limited design concept will be proposed.

Progress in Seismic Design Concept in Moderate Seismicity regions (중약진 지역에서의 내진설계 개념의 발전동향)

  • 장승필
    • Proceedings of the Earthquake Engineering Society of Korea Conference
    • /
    • 1999.04a
    • /
    • pp.217-222
    • /
    • 1999
  • Seismic design in low to moderate seismic regions has to be based on the characteristics of seismic risk ground motion and structural response in that region. The characteristics of seismic hazard in low to moderate seismic regions are reviewed briefly. The recent findings on the dynamic behavior subjected to the moderate intensity level of ground motion are summarized. The seismic design considerations in Easterm America China Australia Thailand and Hong Kong will be introduced, . The effort to adopt the limited ductility design in low to moderate seismicity regions will be reported. Finally research works that are required for the implementation of the limited design concept will be proposed.

  • PDF

Seismic hazard and response spectrum modelling for Malaysia and Singapore

  • Looi, Daniel T.W.;Tsang, H.H.;Hee, M.C.;Lam, Nelson T.K.
    • Earthquakes and Structures
    • /
    • v.15 no.1
    • /
    • pp.67-79
    • /
    • 2018
  • Malaysia and Singapore have adopted Eurocode 8 (EC8) for the seismic design of building structures. The authors studied the seismic hazard modelling of the region surrounding Malaysia and Singapore for a long time and have been key contributors to the drafting of the Malaysia National Annex (NA). The purpose of this paper is to explain the principles underlying the derivation of the elastic response spectrum model for Malaysia (Peninsular Malaysia, Sarawak and Sabah). The current EC8 NA for Singapore is primarily intended to address the distant hazards from Sumatra and is not intended to provide coverage for potential local intraplate hazards. Hence, this paper recommends a reconciled elastic response spectrum for Singapore, aiming to achieve a more robust level of safety. The topics covered include the modelling of distant interplate earthquakes generated offshore and local earthquakes in an intraplate tectonic setting, decisions on zoning, modelling of earthquake recurrences, ground motion and response spectrum. Alternative expression for response spectrum on rock, strictly based on the rigid framework of EC8 is discussed.