• 제목/요약/키워드: Seismic Ground Response Analysis

검색결과 569건 처리시간 0.025초

면진 원전 면진-비면진구간 연결 배관의 내진성능 평가 (Seismic Performance Evaluation of Piping System Crossing the Isolation Interface in Seismically Isolated NPP)

  • 함대기;박준희;최인길
    • 한국지진공학회논문집
    • /
    • 제18권3호
    • /
    • pp.141-150
    • /
    • 2014
  • A methodology to evaluate the seismic performance of interface piping systems that cross the isolation interface in the seismically isolated nuclear power plant (NPP) was developed. The developed methodology was applied to the safety-related interface piping system to demonstrate the seismic performance of the target piping system. Not only the seismic performance for the design level earthquakes but also the performance for the beyond design level earthquakes were evaluated. Two artificial seismic ground input motions which were matched to the design response spectra and two historical earthquake ground motions were used for the seismic analysis of piping system. The preliminary performance evaluation results show that the excessive relative displacements can occur in the seismically isolated piping system. If the input ground motion contained relatively high energy in the low frequency region, we could find that the stress response of the piping system exceed the allowable stress level even though the intensity of the input ground motion is equal to the design level earthquake. The structural responses and seismic performances of piping system were varied sensitively with respect to the intensities and frequency contents of input ground motions. Therefore, for the application of isolation system to NPPs and the verification of the safety of piping system, the seismic performance of the piping system subjected to the earthquake at the target NPP site should be evaluated firstly.

시간영역 인공지진파 생성 (Generation of Synthetic Ground Motion in Time Domain)

  • 김현관;박두희;정창균
    • 토지주택연구
    • /
    • 제1권1호
    • /
    • pp.51-57
    • /
    • 2010
  • 국내에서 내진설계의 중요성이 점차적으로 부각되고 있으며 이에 따라 설계 시 동적 지진해석의 수행빈도가 높아지고 있다. 동적 지진해석을 수행하기 위한 가장 중요한 입력변수 중 한가지는 입력지진파이다. 그러나 현재 국내에서는 지진학적 검토 없이 미국, 일본 등에서 계측된 강진 기록을 입력지진파로 사용하거나 주파수영역에서 생성된 인공지진파를 사용하고 있다. 국외 계측 지진기록은 지진 규모에 따라 변화하는 지속시간과 에너지를 고려할 수 없어서 국내 지진환경에는 적합하지 않으며, 주파수 영역에서 생성되는 설계응답스펙트럼에 맞춤형 인공지진파는 실제 지진기록과 주파수 특성이 상이한 문제가 있다. 본 연구에서는 이와 같은 입력지진파의 문제점을 극복하기 위하여 시간영역에서 수행되는 응답스펙트럼 맞춤형 인공지진파 알고리즘을 적용하여 입력 지진파를 생성하였다. 생성된 지진파는 계측 지진기록의 고유한 성질인 Non-stationary 특성을 보존하며 동시에 설계 응답스펙트럼과 거의 완벽한 일치성을 보이는 것으로 나타났다.

Seismic response of a high-rise flexible structure under H-V-R ground motion

  • We, Wenhui;Hu, Ying;Jiang, Zhihan
    • Earthquakes and Structures
    • /
    • 제23권2호
    • /
    • pp.169-181
    • /
    • 2022
  • To research the dynamic response of the high-rise structure under the rocking ground motion, which we believed that the effect cannot be ignored, especially accompanied by vertical ground motion. Theoretical analysis and shaking table seismic simulation tests were used to study the response of a high-rise structure to excitation of a H-V-R ground motion that included horizontal, vertical, and rocking components. The use of a wavelet analysis filtering technique to extract the rocking component from data for the primary horizontal component in the first part, based on the principle of horizontal pendulum seismogram and the use of a wavelet analysis filtering technique. The dynamic equation of motion for a high-rise structure under H-V-R ground motion was developed in the second part, with extra P-△ effect due to ground rocking displacement was included in the external load excitation terms of the equation of motion, and the influence of the vertical component on the high-rise structure P-△ effect was also included. Shaking table tests were performed for H-V-R ground motion using a scale model of a high-rise TV tower structure in the third part, while the results of the shaking table tests and theoretical calculation were compared in the last part, and the following conclusions were made. The results of the shaking table test were consistent with the theoretical calculation results, which verified the accuracy of the theoretical analysis. The rocking component of ground motion significantly increased the displacement of the structure and caused an asymmetric displacement of the structure. Thus, the seismic design of an engineering structure should consider the additional P-△ effect due to the rocking component. Moreover, introducing the vertical component caused the geometric stiffness of the structure to change with time, and the influence of the rocking component on the structure was amplified due to this effect.

유사 강지진동을 이용한 지반응답의 Amplication Factor 스펙트럼 분석 (Analysis of Amplication Factor of Response Spectrum using Strong Ground Motions Compatible to the Domestic Seismotectonic Characteristics)

  • 김준경
    • 한국지진공학회:학술대회논문집
    • /
    • 한국지진공학회 1997년도 춘계 학술발표회 논문집 Proceedings of EESK Conference-Fall 1997
    • /
    • pp.88-93
    • /
    • 1997
  • Amplication factor spectrum has been obtained and compared with standard Response Spectrum using the observed strong ground motions database. The observed ground motions from the Miramichi, Nahanni, Saguenay and New Madrid Earthquake (vertical component 19. horizontal component 36). which are estimated to represent domestic seismotectonic characteristics such as seismic source, attenuation, and site effect, are used for the analysis of amplication factor spectrum. Amplication factor has been calculated using both observed peak values and results from responses to the observed horizontal and vertical ground motions. The comparison shows that the amplication factors resultant from this study exceeds those of Standard Response Spectrum at relatively higher frequencies. The results implie that the characteristics of the seismic strong ground motion which may represent the domestic seismotectonic characteristics differs from those of Standard Response Spectrum, which are resultant from the strong ground motions observed mainly at the westem United States.

  • PDF

기초-지반 상호작용을 고려한 교량의 다지점 입력 지진해석 기법 (Seismic Response Analysis Method of Bridge Considering Foundation-Soil Interaction and Multi-support Input Motion)

  • 김효건;최광규;엄영호;권영록
    • 한국지진공학회:학술대회논문집
    • /
    • 한국지진공학회 2006년도 학술발표회 논문집
    • /
    • pp.284-291
    • /
    • 2006
  • This paper presents a seismic response analysis of bridge structures considering foundation-soil interaction and multi-support input motion. In the earthquake analysis of structures it is usually assumed that the input ground motion is the same at all supports. However, this assumption is not justified for long structures like bridges, because observations have shown the earthquake ground motion can vary considerably within relatively small distances. When the soil under the foundation is relatively soft and deep, analysis for foundation-soil interaction always must be peformed. To consider foundation-soil interaction, soil response analysis is preceded, and after determining the material characteristics of foundation element obtained by foundation-soil interaction analysis at the frequency domain, the seismic response analysis of bridge superstructure with the equivalent spring and damper is performed. Finally, influences of multi-support input motion, which are affected by different soil characteristics, are also considered in this paper.

  • PDF

근거리 지진에 의한 사장교의 동적응답해석에 관한 연구 (A Study on Dynamic Response Analysis of the Cable-Stayed Bridge Structure Subjected to Near Fault Ground Motions)

  • 한성호;권의성;신재철;방명석
    • 한국전산구조공학회:학술대회논문집
    • /
    • 한국전산구조공학회 2004년도 봄 학술발표회 논문집
    • /
    • pp.439-446
    • /
    • 2004
  • In this study, the characteristic of the Near Fault Ground Motion which was not considered at the seismic design in our country and how the Near Fault Ground Motion affects the cable-stayed bridge which have long period is analyzed through the dynamic response analysis. So, the object of this study is following that it makes the data which can be utilized as the seismic safety evaluation in case of the cable-stayed bridge taken the near fault in the future.

  • PDF

Stochastic responses of isolated bridge with triple concave friction pendulum bearing under spatially varying ground motion

  • Yurdakul, Muhammet;Ates, Sevket
    • Structural Engineering and Mechanics
    • /
    • 제65권6호
    • /
    • pp.771-784
    • /
    • 2018
  • This study aims to investigate the stochastic response of isolated and non-isolated highway bridges subjected to spatially varying earthquake ground motion model. This model includes wave passage, incoherence and site response effects. The wave passage effect is examined by using various wave velocities. The incoherency effect is investigated by considering the Harichandran and Vanmarcke coherency model. The site response effect is considered by selecting homogeneous firm, medium and soft soil types where the bridge supports are constructed. The ground motion is described by power spectral density function and applied to each support point. Triple concave friction pendulum (TCFP) bearing which is more effective than other seismic isolation systems is used for seismic isolation. To implement seismic isolation procedure, TCFP bearing devices are placed at each of the support points of the deck. In the analysis, the bridge selected is a five-span featuring cast-in-place concrete box girder superstructure supported on reinforced concrete columns. Foundation supported highway bridge is regarded as three regions and compared its different situation in the stochastic analysis. The stochastic analyses results show that spatially varying ground motion has important effects on the stochastic response of the isolated and non-isolated bridges as long span structures.

전단파 속도가 중저층 철근콘크리트 구조물의 지진 응답에 미치는 영향 (Effect of Shear Wave Velocity on Seismic Response of Low- and Mid-Rise Reinforced Concrete Frames)

  • 김민선;이창석;김병민;전종수
    • 한국지진공학회논문집
    • /
    • 제28권5호
    • /
    • pp.249-255
    • /
    • 2024
  • Strong ground motions at specific sites can cause severe damage to structures. Understanding the influence of site characteristics on the dynamic response of structures is crucial for evaluating their seismic performance and mitigating the potential damage caused by site effects. This study investigates the impact of the average shear wave velocity, as a site characteristic, on the seismic response of low-to-medium-rise reinforced concrete buildings. To explore them, one-dimensional soil column models were generated using shear wave velocity profile from California, and nonlinear site response analyses were performed using bedrock motions. Nonlinear dynamic structural analyses were conducted for reinforced concrete moment-resisting frame models based on the regional information. The effect of shear wave velocity on the structural response and surface ground motions was examined. The results showed that strong ground motions tend to exhibit higher damping on softer soils, reducing their intensity, while on stiffer soils, the ground motion intensity tends to amplify. Consequently, the structural response tended to increase on stiffer soils compared to softer soils.

대형지진시 다층지반의 지진응답해석 (Seismic Response Analysis at Multi-layered Ground During Large Earthquake)

  • 김용성
    • 한국지반공학회논문집
    • /
    • 제18권4호
    • /
    • pp.55-64
    • /
    • 2002
  • 본 논문에서는 점탄-점소성 구성모델을 다층지반에서의 대형지진 발생시의 조건에 적용하기 위해 일본 고베 포트아일랜드에서 발생한 1995 Hyogoken Nanbu 지진에 대한 지진응답 해석을 수행하였다. 지진응답해석 결과 점성토의탄-점소성 모델과 점탄-점소성 모델로 계산된 가속도 기록은 포트아일랜드에서 계측된 가속도 기록과 거의 일치함을 알 수 있었으며, 점성토 지반 부근에서 점탄-점소성 모델과 탄-점소성 모델은 미세하게 다른 거동 특성을 나타내어 점소성 모델의 타당성을 확인하였다. 따라서 동적 점탄-점소성 구성모델은 대변형률 영역에서 점성토의 소성변형을 유발하는 대형 지진 등의 발생시 점성토의 증폭 및 감쇠특성의 파악을 위해 적용가능한 모델임이 입증되었다.

후쿠시마 원자력발전소 지진 계측 기록 분석을 통한 지진파의 공간적 변화 특성 평가 (Spatial Variation Characteristics of Seismic Motions through Analysis of Earthquake Records at Fukushima Nuclear Power Plant)

  • 하정곤;김미래;김민규
    • 한국지진공학회논문집
    • /
    • 제25권5호
    • /
    • pp.223-232
    • /
    • 2021
  • The spatial variation characteristics of seismic motions at the nuclear power plant's site and structures were analyzed using earthquake records obtained at the Fukushima nuclear power plant during the Great East Japan Earthquake. The ground responses amplified as they approached the soil surface from the lower rock surface, and the amplification occurred intensively at about 50 m near the ground. Due to the soil layer's nonlinear characteristics caused by the strong seismic motion, the ground's natural frequency derived from the response spectrum ratio appeared to be smaller than that calculated from the shear wave velocity profile. The spatial variation of the peak ground acceleration at the ground surface of the power plant site showed a significant difference of about 0.6 g at the maximum. As a result of comparing the response spectrums at the basement of the structure with the design response spectrum, there was a large variability by each power plant unit. The difference was more significant in the Fukushima Daiichi site record, which showed larger peak ground acceleration at the surface. The earthquake motions input to the basement of the structure amplified according to the structure's height. The natural frequency obtained from the recorded results was lower than that indicated in the previous research. Also, the floor response spectrum change according to the location at the same height was investigated. The vertical response on the foundation surface showed a significant difference in spectral acceleration depending on the location. The amplified response in the structure showed a different variability depending on the type of structure and the target frequency.