• 제목/요약/키워드: Seismic Event

검색결과 255건 처리시간 0.022초

Influence of axial load and loading path on the performance of R.C. bridge piers

  • Kehila, Fouad;Bechtoula, Hakim;Benaouar, Djillali
    • Computers and Concrete
    • /
    • 제15권4호
    • /
    • pp.563-588
    • /
    • 2015
  • Piers are the most vulnerable part of a bridge structure during an earthquake event. During Kobe earthquake in 1995, several bridge piers of the Hanshin Expressway collapsed for more than 600m of the bridge length. In this paper, the most important results of an experimental and analytical investigation of ten reinforced concrete bridge piers specimens with the same cross section subjected to constant axial (or variable) load and reversed (or one direction) cycling loading are presented. The objective was to investigate the main parameters influencing the seismic performance of reinforced concrete bridge piers. It was found that loading history and axial load intensity had a great influence on the performance of piers, especially concerning strength and stiffness degradation as well as the energy dissipation. Controlling these parameters is one of the keys for an ideal seismic performance for a given structure during an eventual seismic event. Numerical models for the tested specimens were developed and analyzed using SeismoStruct software. The analytical results show reasonable agreement with the experimental ones. The analysis not only correctly predicted the stiffness, load, and deformation at the peak, but also captured the post-peak softening as well. The analytical results showed that, in all cases, the ratio, experimental peak strength to the analytical one, was greater than 0.95.

Development of earthquake instrumentation for shutdown and restart criteria of the nuclear power plant using multivariable decision-making process

  • Hasan, Md M.;Mayaka, Joyce K.;Jung, Jae C.
    • Nuclear Engineering and Technology
    • /
    • 제50권6호
    • /
    • pp.860-868
    • /
    • 2018
  • This article presents a new design of earthquake instrumentation that is suitable for quick decision-making after the seismic event at the nuclear power plant (NPP). The main objective of this work is to ensure more availability of the NPP by expediting walk-down period when the seismic wave is incident. In general, the decision-making to restart the NPP after the seismic event requires more than 1 month if an earthquake exceeds operating basis earthquake level. It affects to the plant availability significantly. Unnecessary shutdown can be skipped through quick assessments of operating basis earthquake, safe shutdown earthquake events, and damage status to structure, system, and components. Multidecision parameters such as cumulative absolute velocity, peak ground acceleration, Modified Mercalli Intensity Scale, floor response spectrum, and cumulative fatigue are discussed. The implementation scope on the field-programmable gate array platform of this work is limited to cumulative absolute velocity, peak ground acceleration, and Modified Mercalli Intensity. It can ensure better availability of the plant through integrated decision-making process by automatic assessment of NPP structure, system, and components.

지진파 탁월주기를 고려한 비구조요소의 수평설계지진력 평가 (A Study on Evaluation of Horizontal Force of Non-structural Components Considering Predominant Periods of Seismic Waves)

  • 오상훈;김주찬
    • 한국지진공학회논문집
    • /
    • 제24권6호
    • /
    • pp.267-275
    • /
    • 2020
  • In the event of an earthquake, non-structural components require seismic performance to ensure evacuation routes and to protect lives from falling non-structural components. Accordingly, the seismic design code proposes horizontal force for the design and evaluation of non-structural components. Ground motion observed on each floor is affected by a building's eigen vibration mode. Therefore, the earthquake damage of non-structural components is determined by the characteristics of the non-structural component system and the vibration characteristics of the building. Floor response spectra in the seismic design code are estimated through time history analysis using seismic waves. However, it is difficult to use floor response spectra as a design criterion because of user-specific uncertainties of time history analysis. In addition, considering the response characteristics of high-rise buildings to long-period ground motions, the safety factor of the proposed horizontal force may be low. Therefore, this study carried out the horizontal force review proposed in the seismic design code through dynamic analysis and evaluated the floor response of seismic waves considering buildings and predominant periods of seismic waves.

Performance-based design of seismic isolated buildings considering multiple performance objectives

  • Morgan, Troy A.;Mahin, Stephen A.
    • Smart Structures and Systems
    • /
    • 제4권5호
    • /
    • pp.655-666
    • /
    • 2008
  • In the past 20 years, seismic isolation has see a variety of applications in design of structures to mitigate seismic hazard. In particular, isolation has been seen as a means of achieving enhanced seismic performance objectives, such as those for hospitals, critical emergency response facilities, mass electronic data storage centers, and similar buildings whose functionality following a major seismic event is either critical to the public welfare or the financial solvency of an organization. While achieving these enhanced performance objectives is a natural (and oftentimes requisite) application of seismic isolation, little attention has been given to the extension of current design practice to isolated buildings which may have more conventional performance objectives. The development of a rational design methodology for isolated buildings requires thorough investigation of the behavior of isolated structures subjected to seismic input of various recurrence intervals, and which are designed to remain elastic only under frequent events. This paper summarizes these investigations, and proposed a consistent probabilistic framework within which any combination of performance objectives may be met. Analytical simulations are presented, the results are summarized. The intent of this work is to allow a building owner to make informed decisions regarding tradeoffs between superstructure performance (drifts, accelerations) and isolation system performance. Within this framework, it is possible to realize the benefits of designing isolated buildings for which the design criteria allows consideration of multiple performance goals.

Comparative performance of seismically deficient exterior beam-column sub-assemblages of different design evolutions: A closer perspective

  • Kanchana Devi, A.;Ramanjaneyulu, K.
    • Earthquakes and Structures
    • /
    • 제13권2호
    • /
    • pp.177-191
    • /
    • 2017
  • In the present study, exterior beam column sub-assemblages are designed in accordance with the codal stipulations prevailed at different times prior to the introduction of modern seismic provisions, viz., i) Gravity load designed with straight bar anchorage (SP1), ii) Gravity load designed with compression anchorage (SP1-D), iii) designed for seismic load but not detailed for ductility (SP2), and iv) designed for seismic load and detailed for ductility (SP3). Comparative seismic performance of these exterior beam-column sub-assemblages are evaluated through experimental investigations carried out under repeated reverse cyclic loading. Seismic performance parameters like load-displacement hysteresis behavior, energy dissipation, strength and stiffness degradation, and joint shear deformation of the specimens are evaluated. It is found from the experimental studies that with the evolution of the design methods, from gravity load designed to non-ductile and then to ductile detailed specimens, a marked improvement in damage resilience is observed. The gravity load designed specimens SP1 and SP1-D respectively dissipated only one-tenth and one-sixth of the energy dissipated by SP3. The specimen SP3 showcased tremendous improvement in the energy dissipation capacity of nearly 2.56 times that of SP2. Irrespective of the level of design and detailing, energy dissipation is finally manifested through the damage in the joint region. The present study underlines the seismic deficiency of beam-column sub-assemblages of different design evolutions and highlights the need for their strengthening/retrofit to make them fit for seismic event.

Dynamic assessment of the seismic isolation influence for various aircraft impact loads on the CPR1000 containment

  • Mei, Runyu;Li, Jianbo;Lin, Gao;Zhu, Xiuyun
    • Nuclear Engineering and Technology
    • /
    • 제50권8호
    • /
    • pp.1387-1401
    • /
    • 2018
  • An aircraft impact (AI) on a nuclear power plant (NPP) is considered to be a beyond-design-basis event that draws considerable attention in the nuclear field. As some NPPs have already adopted the seismic isolation technology, and there are relevant standards to guide the application of this technology in future NPPs, a new challenge is that nuclear power engineers have to determine a reasonable method for performing AI analysis of base-isolated NPPs. Hence, dynamic influences of the seismic isolation on the vibration and structural damage characteristics of the base-isolated CPR1000 containment are studied under various aircraft loads. Unlike the seismic case, the impact energy of AI is directly impacting on the superstructure. Under the coupled influence of the seismic isolation and the various AI load, the flexible isolation layer weakens the constraint function of the foundation on the superstructure, the results show that the seismic isolation bearings will produce a large horizontal deformation if the AI load is large enough, the acceleration response at the base-mat will also be significantly affected by the different horizontal stiffness of the isolation bearing. These concerns require consideration during the design of the seismic isolation system.

Multi-unit Level 2 probabilistic safety assessment: Approaches and their application to a six-unit nuclear power plant site

  • Cho, Jaehyun;Han, Sang Hoon;Kim, Dong-San;Lim, Ho-Gon
    • Nuclear Engineering and Technology
    • /
    • 제50권8호
    • /
    • pp.1234-1245
    • /
    • 2018
  • The risk of multi-unit nuclear power plants (NPPs) at a site has received considerable critical attention recently. However, current probabilistic safety assessment (PSA) procedures and computer code do not support multi-unit PSA because the traditional PSA structure is mostly used for the quantification of single-unit NPP risk. In this study, the main purpose is to develop a multi-unit Level 2 PSA method and apply it to full-power operating six-unit OPR1000. Multi-unit Level 2 PSA method consists of three steps: (1) development of single-unit Level 2 PSA; (2) extracting the mapping data from plant damage state to source term category; and (3) combining multi-unit Level 1 PSA results and mapping fractions. By applying developed multi-unit Level 2 PSA method into six-unit OPR1000, site containment failure probabilities in case of loss of ultimate heat sink, loss of off-site power, tsunami, and seismic event were quantified.

관측소 부지증폭 특성을 고려한 후쿠오카 지진특성 연구 (Analysis of Fukuoka Earthquakes Characterisics considering site amplification)

  • 오태석;유성화;김준경
    • 한국지구물리탐사학회:학술대회논문집
    • /
    • 한국지구물리탐사학회 2006년도 공동학술대회 논문집
    • /
    • pp.187-192
    • /
    • 2006
  • 우리나라는 강진으로부터 관측된 자료의 부족으로 중약지진을 이용한 강진의 감쇠특성 유추 및 지진원 및 전달특성 변수에 대한 연구가 필요하다. 본 연구에서는 최근 발생한 일본 후쿠오카지진 자료를 이용하여 LM 역산법으로 역산을 수행하였다. 이때 부지증폭효과, 관측소의 조건 및 규모의 변수화에 따라 각각 역산을 수행한 결과 부지증폭효과를 고려한 경우 Bed Rock으로 판단되는 관측소만의 역산 결과값과 유사한 값을 확인하였다. ${\Delta}{\delta}$의 경우 부지증폭효과를 고려하지 않은 Case 1 및 Case 5에서 1108bar 및 185bar로 나타났으며 부지효과를 고려한 Case 3 및 Case 7에서는 147bar 및 146bar로 안정적인 값을 보이고 있다. 향후 보다 많은 연구 분석을 통한다면 보다 신뢰성 높은 결과값이 나타날 것으로 판단된다.

  • PDF

여유고만으로 추정된 국내 재해위험 저수지의 지진시 파괴확률 (Seismic Failure Probability of the Korean Disaster Risk Fill Dams Estimated by Considering Freeboard Only)

  • 하익수;이수권;임정열;정영훈
    • 대한토목학회논문집
    • /
    • 제36권3호
    • /
    • pp.451-461
    • /
    • 2016
  • 본 연구의 목적은 소규모 필댐의 지진시 파괴확률을 산정하는 방법과 절차를 예시하고, 지반공학적 정보가 부족한 국내 재해위험 저수지의 지진시 파괴확률을 추정하는 것이다. 이를 위하여, 국내 재해위험 저수지로 지정된 저수지 중 지반공학적인 정보를 얻을 수 있는 7개 저수지에 대해 사건수 분석 기법을 적용하여 지진에 대한 파괴확률을 평가하였으며, 그 방법 및 절차를 예시하였다. 안전진단보고서를 확보한 84개 재해위험 저수지의 댐높이와 여유고와의 관계를 검토하였고, 미공병단 평가도구로 이용되는 파괴확률 산정식을 이러한 댐높이와 여유고와의 관계에 연관시켰다. 이러한 연관관계로부터, 지진시 파괴확률이 '0'이 되는 댐높이-여유고 임계곡선을 도출하였고, 이러한 임계곡선과 7개 저수지에 대해 산정한 지진시 파괴확률로부터 물성확보가 어려운 국내 재해위험 저수지의 개략적인 지진에 대한 파괴확률을 추정하였다.

Quanterra 기록계의 실시간 이벤트 패킷을 이용한 진앙 추정 (Epicenter Estimation Using Real-Time Event Packet of Quanterra digitizer)

  • 임인섭;신동훈;신진수;정순기
    • 지구물리와물리탐사
    • /
    • 제12권4호
    • /
    • pp.316-327
    • /
    • 2009
  • 1999년 국내 지진관측소 표준안이 제안된 이후로, 주요 지진관측 기관 대부분의 관측소에는 Quanterra 기록계가 설치되어 운영되고 있다. Quanterra 기록계에서는 실시간 이벤트 패킷과 데이터 패킷이 생성, 전송된다. 이벤트 패킷의 특성과 각 성분별 데이터 패킷의 데이터 센터 도착 시간을 분석하였다. 초당 100샘플의 속도 자료 기반 실시간 이벤트 패킷의 신호 대 잡음비와 신호 주기를 이용하여 실제 지진의 P파와 연관이 있는 패킷 선택 기준을 도출하였다. 선택된 이벤트 패킷의 시간 정보를 이용, 진앙을 추정하고 분석하였다. 시험 운영 결과 이벤트 패킷은 데이터 패킷에 비해 평균 3~4초 빨리 도착하며, 그 개수도 데이터 패킷에 비해 0.3%에 불과하다. 전체 이벤트 패킷 중 약 5% 만이 실제 지진의 P파와 연관된 이벤트 패킷으로 선택되었다. 선택된 이벤트 패킷을 이용하여 내륙에서 발생한 규모 2.5 이상의 지진에 대해서는 20초 이내에 10 km 이내의 오차로 진앙을 결정할 수 있었다.