• Title/Summary/Keyword: Seismic Detailing

Search Result 98, Processing Time 0.027 seconds

New Technique of Earthquake Resistant Performance of Reinforced Concrete Infilled Shear Wall using New Materials and Advanced Detailing (신소재 및 성능개선 디테일을 활용한 철근콘크리트 골조면내 전단벽의 내진성능 개선기술)

  • Ha, Gee-Joo;Shin, Jong-Hak;Kim, Yun-Yong;Yang, Seung-Hyeok;Hong, Kun-Ho;Kim, Jeong-Su
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2006.05a
    • /
    • pp.202-205
    • /
    • 2006
  • Three reinforced concrete shear wall and infilled shear wall using retrofitting system were constructed and tested under both vertical and cyclic loadings, Experimental programs were carried out to evaluate and improve the seismic performance of such test specimens, such as the hysteretic behavior, the maximum horizontal strength, crack propagation, and ductility etc. under load reversals. All the specimens were modeled in one-third scale size. For specimens(RWAHC, RWXHC) designed by the improving of seismic performance using the high ductile fiber composite mortar, anchoring, and advanced detailing system for the reinforced concrete shear wall load-carrying capacities were increased $1.1{\sim}1.22$ times in comparison with the standard specimen(SRW).

  • PDF

Structural Performance Enhancement of Seismic Retrofitted Column Using New Reinforcing Materials (신보강재로 보수 보강한 기둥의 구조 성능 개선)

  • Oh, Chang-Hak;Han, Sang-Whan;Lee, Li-Hyung
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.5 no.2
    • /
    • pp.121-128
    • /
    • 2001
  • Reinforced concrete frame buildings in regions of low to moderate seismicity are typically designed only for gravity loads with non-seismic detailing provisions of the code. These buildings possess strong beam-weak column, which brings about the brittle structural performance like the column sidesway failure mechanism during the strong lateral load. The objective of this paper is to enhance the column strength and deformation capacity for reconfiguring the structural failure mode by averting a column soft-story collapse and moving to a more ductile beam-sides way mechanism suing new reinforcing materials. Aramid fiber sheet and reinforcing rod-composite materials was used for this purpose. The column was modeled by the 2/3 scale experimental specimen retested. According to the concept of the capacity design, the damaged column was strengthened by the column jacketing using new reinfocing materials such as rod-composite materials. In conclusion, the improvement of the flexural strength is observed and the capacity of the energy dissipation and the ductility is enhanced, too.

  • PDF

Nonlinear Behavior Characteristics and Seismic Performance of the Existing RC Piers without Seismic Detailing (비내진 상세 기존 RC 교각의 비선형 거동특성 및 내진성능)

  • 김재관
    • Proceedings of the Earthquake Engineering Society of Korea Conference
    • /
    • 2000.04a
    • /
    • pp.327-334
    • /
    • 2000
  • The seismic performance evaluation of the existing non-seismic detailed RC piers has risen as urgent task for rational and cost-effective seismic retrofitting works as well as development of new seismic design concept. The scale model test has been conducted to investigate nonlinear behavior characteristics and the seismic performance of existing piers with lap-spliced longitudinal reinforcements in the plastic hinge zone which are of the solid circular and the hollow rectangular section. The lap splice in this zone is found to cause premature bond failure. The experimental results show very poor seismic performance of circular section pier but relatively large ductility of the rectangular one.

  • PDF

Seismic Behavior of Nonseismically Detailed Reinforced Concrete Beam-Column Joints (비내진 상세를 가진 RC 보-기둥 접합부의 지진 거동)

  • Woo, Sung-Woo;Lee, Han-Seon
    • Journal of the Korea Concrete Institute
    • /
    • v.15 no.6
    • /
    • pp.894-901
    • /
    • 2003
  • The objective of this study is to clarify the seismic capacity and the characteristics in the hysteretic behavior of RC structures with non-seismic detailing. Interior and exterior beam-column subassemblages were selected from a ten-story RC building and six 1/3-scale specimens were constructed with three variables; (1) with and without slab, (2) with and without hoop bars in the joint region, (3) upward and downward direction of anchorage for the bottom bar in beams of exterior beam-column subassemblage. The test results have shown; (1) in case of interior beam-column subassemblage, there is no almost difference between nonseismic and seismic details in the strength and ductility capacity; (2) the Korean practice of anchorage (downward and 25 $d_{b}$ anchorage length) in the exterior joint caused the 10%∼20% reduction of strength and 27% reduction of ductility in comparison with the case of seismic details; and the existence of hoop bars in the joint region shows no effect in shear strain.

Ductility Based Seismic Design of Circular R/C Bridge Piers (원형 철근콘크리트 교각의 연성도 내진설계)

  • Choi Jin Ho;Ko Seong Hyun;Hwang Jung Kil;Lee Jea Hoon
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2005.11a
    • /
    • pp.101-104
    • /
    • 2005
  • This study is to develop detailing guidelines based on ductility demand for reinforced concrete bridge columns in areas of low to moderate seismicity. The current seismic design criteria of the Korea Design Specifications for Highway Bridge (KDSHB 2005) adopted the seismic design concept and requirements of the AASHTO specifications. In order to obtain full ductile behavior under seismic loads, i.e. when applied seismic force is larger than design flexural strength of column section, a response modification factor (R=3 or 5) is used. In moderate seismicity regions, however, adopting the full ductility design concept sometimes results in construction problems due to reinforcement congestion. The objective of this paper is to suggest a new simplified seismic design of reinforced concrete bridge columns for moderate seismicity regions.

  • PDF

Behavior of Bellow Rectangular RC Piers without Seismic Detailing Subjected to Cyclic Lateral Load (수평 반복하중을 받는 비내진상세 RC 중공구형교각의 거동특성)

  • Kim, Jae-Kwan;Kim, Ick-Hyun;Lim, Hyun-Woo;Lee, Jae-Ho
    • Journal of the Korea Concrete Institute
    • /
    • v.15 no.2
    • /
    • pp.263-272
    • /
    • 2003
  • Scaled model tests were carried out to investigate a seismic behavior of reinforced concrete piers with hollow-rectangular section that were not detailed for seismic load. Additional lateral reinforcing bars were not provided that might be required for confinement against earthquake load. Two kinds of reinforcement details were considered for the longitudinal reinforcing bars: lap-spliced and continuous. In the lap-spliced model all longitudinal bars were lapped at the same height in a bottom plastic hinge zone. In the other model all longitudinal bars extended continuously throughout the height. The constructed models were subjected to quasi-static cyclic lateral loading in the presence of the constant vertical load. Limited ductile behavior was observed in the test of lap-spliced model and more ductile behavior was observed in the test of a continuous longitudinal reinforcement model.

Experimental Study for Seismic Performance Evaluation with Existing RC Bridge Piers (기존 실물 원형 철근콘크리트 교각의 내진 성능 평가를 위한 실험적 연구)

  • Lee, Dae-Hyoung;Kim, Hoon;Chung, Young-Soo;Lee, Jae-Hoon
    • Proceedings of the Earthquake Engineering Society of Korea Conference
    • /
    • 2002.03a
    • /
    • pp.258-265
    • /
    • 2002
  • The recent earthquakes in worldwide have caused extensive damage to highway bridge structures. In particular, it has been demonstrated that concrete columns with inadequate lateral reinforcement contributed to the catastrophic collapse of many bridges. The poor detailing of the starter bars in these columns compounded the problem of seismic deficiency. Therefore, this study has been performed to verify the effect of lap spliced longitudinal steel and confinement steel type for the seismic behavior of reinforced concrete bridge piers. Eight concrete columns were constructed with existing scale as diameter, 1.2m and height, 4.8m. 4 confinement steel types were adopted for seismic performance evaluation. All specimens were rested under inelastic cyclic loading while simultaneously subjected to a constant axial load. The longitudinal steel lap-splice is highly effective in seismic performance deterioration of reinforced concrete bridge piers.

  • PDF

Assessment of seismic strengthening solutions for existing low-rise RC buildings in Nepal

  • Chaulagain, Hemchandra;Rodrigues, Hugo;Spacone, Enrico;Varum, Humberto
    • Earthquakes and Structures
    • /
    • v.8 no.3
    • /
    • pp.511-539
    • /
    • 2015
  • The main objective of this study is to analytically investigate the effectiveness of different strengthening solutions in upgrading the seismic performance of existing reinforced concrete (RC) buildings in Nepal. For this, four building models with different structural configurations and detailing were considered. Three possible rehabilitation solutions were studied, namely: (a) RC shear wall, (b) steel bracing, and (c) RC jacketing for all of the studied buildings. A numerical analysis was conducted with adaptive pushover and dynamic time history analysis. Seismic performance enhancement of the studied buildings was evaluated in terms of demand capacity ratio of the RC elements, capacity curve, inter-storey drift, energy dissipation capacity and moment curvature demand of the structures. Finally, the seismic safety assessment was performed based on standard drift limits, showing that retrofitting solutions significantly improved the seismic performance of existing buildings in Nepal.

Seismic Capacity of a Reinforced Concrete Structure without Seismic Detailing and Implication to the Seismic Design in the Region of Moderate Seismicity (비내진상세 철근콘크리트 구조물의 내진성능 및 중약진지역 내진설계에의 적용)

  • 김익현
    • Proceedings of the Earthquake Engineering Society of Korea Conference
    • /
    • 1999.10a
    • /
    • pp.305-312
    • /
    • 1999
  • A four-story reinforced concrete frame building model is designed for the gravity loads. only Static nonlinear pushover analyses are performed in two orthogonal horizontal directions. The overall capacity curves are converted into ADRS spectra and compared with demand spectra. At several points the deformed shape moment and shear distribution are calculated. It is observed that the seismic capacity may not meet the design requirements in soft soil condition and may collapse in MCE. It is concluded that limited but adequate amount of ductility need be provided in the seismic design in low to moderate seismicity regions.

  • PDF

Seismic Behavior of Nonseismically Detailed Reinforced Concrete Beam-Column Joints (비내진 상세를 가진 RC 보-기둥 접합부의 거동)

  • 이한선;우성우
    • Proceedings of the Earthquake Engineering Society of Korea Conference
    • /
    • 2003.09a
    • /
    • pp.133-140
    • /
    • 2003
  • The objective of this study is to clarify the seismic capacity and the characteristics in the hysteretic behavior of RC structures with non-seismic detailing. Interior and exterior beam-column subassemblages were selected from a ten-story RC building and six 1/3-scale specimens were constructed with three variables; (1) with and without slab, (2) with and without hoop bars in the Joint region, (3) upward and downward direction of anchorage for the bottom bar in beams of exterior beam-column subassemblage. The test results have shown; (1) in case of interior beam-column subassemblage, there is no almost difference between nonseismic and seismic details in the strength and ductility capacity; (2) the Korean practice of anchorage (downward and 25 $d_{b}$ anchorage length) in the exterior Joint caused the 10%~20% reduction of strength and 27% reduction of ductility iii comparison with tile case of seismic details; and the existence of hoop bars in the joint region shows no effect in shear strain.n.

  • PDF