• Title/Summary/Keyword: Seismic Design Codes

Search Result 302, Processing Time 0.022 seconds

Seismic Design Provisions and Revisions to the Guides for RC Flat Plate Systems in the US (미국에서의 RC무량판 내진설계기준과 개정 방향)

  • Kang, Thomas H.K.;Park, Hong-Gun
    • Magazine of the Korea Concrete Institute
    • /
    • v.20 no.2
    • /
    • pp.25-36
    • /
    • 2008
  • Seismic design of reinforced concrete flat plate structures is often complicated as it deals with three dimensionality and continuous spans, and mostly material complexity and reinforcement variation. A great degree of uncertainty in such structural and material properties is thus inherent in the RC flat plate systems, and hinders simplification of the design process in terms of slab flexure, unbalanced moment transfer at a slab-column connection, and punching shear. For these reasons, there have been substantial changes and updates in building codes relating to flat plates and slab-column connections over a handful of decades. Also, for the same reason, some of codes never have been revised. As a consequence of nonsimultaneous development of each provision, it tends to confuse structural engineers when using a mixture of all different US code provisions. In this paper, in the step-by-step logical order, seismic design of the RC flat plate systems is re-organized and clarified to make it easier to apply. Furthermore, recent changes or proposed changes are introduced, and are explained as to how it will apply in practice.

Capacity Design of RC Bridge Columns for Seismic Loading

  • Lee Jae Hoon;Ko Seong Hyun;Choi Jin Ho;Shin Sung Jin
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2004.11a
    • /
    • pp.591-594
    • /
    • 2004
  • Recently, a tendency for development of seismic approach of foreign countries is capacity design development. Capacity design is rational seismic design concept of capacity protection considering not only earthquake magnitude, but also behavior of structure. For that reason, the most bridge seismic design specifications contain capacity protection provisions explicitly or implicitly. The capacity protection is normally related with slenderness effect of the columns, force transfer in connections between columns and adjacent elements, and shear design of columns. It intends to prevent brittle failure of the structural components of bridges, so that the whole bridge system may show ductile behavior and failure during earthquake events. The objectives of this paper are to deduce needed provisions for the moderate seismicity regions such as Korea after studying current seismic design codes and to establish rational criteria provisions of seismic design for future revision of seismic design specifications.

  • PDF

Damage of Gyeongju 9.12 Earthquakes and Seismic Design Criteria for Nonstructural Elements (경주 9.12지진의 피해 및 비구조요소 내진설계기준)

  • Lee, Su Hyeon;Cho, Tae Gu;Lim, Hwan Taek;Choi, Byong Jeong
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.20 no.7_spc
    • /
    • pp.561-567
    • /
    • 2016
  • After the Gyeong-ju 9.12 earthquake, we found the necessity of seismic design of nonstructural element is important to reduce damages in view of properties and economic losses. This study focused on the investigation of damages including both properties and human beings. It was found that most of the damages are leaking of water pipe line, rupture of glasses, spalling of roof finishing, cracks of building, and falling from roof. It was also found that the seismic design force of nonstructural elements is taking account into the natural periods, amplification factors, response modification factors to forsee inelastic behaviors. From this studies, it is recommended that more studies are necessary on the seismic design force of nonstructural element.

Seismic Fragility Analysis Utilizing PDF Interpolation Technique (확률밀도함수 보간에 의한 교량의 지진취약도 분석)

  • ;;;Shigeru Kushiyama
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2003.10a
    • /
    • pp.495-502
    • /
    • 2003
  • This study proposed the Probability Density Function (PDF) interpolation technique to evaluate the seismic fragility curves as a function of the return period. Seismic fragility curves have been developed as a function of seismic intensities such as peak ground acceleration, peak pound velocity, and pseudo-velocity spectrum. The return period of design earthquakes, however, can be more useful among those seismic intensity measurements, because the seismic hazard curves are generally represented with a return period of design earthquakes and the seismic design codes also require to consider the return period of design earthquake spectrum for a specific site. In this respect the PDF interpolation technique is proposed to evaluate the seismic fragility curves as a function of return period. Seismic fragility curves based on the return period are compared with ones based on the peak ground acceleration for the bridge model.

  • PDF

Evaluation of EC8 and TBEC design response spectra applied at a region in Turkey

  • Yusuf Guzel;Fidan Guzel
    • Earthquakes and Structures
    • /
    • v.25 no.3
    • /
    • pp.199-208
    • /
    • 2023
  • Seismic performance analysis is one of the fundamental steps in the design of new or retrofitting buildings. In the seismic performance analysis, the adapted spectral acceleration curve for a given site mainly governs the seismic behavior of buildings. Since every soil site (class) has a different impact on the spectral accelerations of input motions, different spectral acceleration curves have to be involved for every soil class that the building is located on top of. Modern seismic design codes (e.g., Eurocode 8, EC8, or Turkish Building Earthquake Code, TBEC) provide design response spectra for all the soil classes to be used in the building design or retrofitting. This research aims to evaluate the EC8 and TBEC based design response spectra using the spectra of real earthquake input motions that occurred (and were recorded at only soil classes A, B and C, no recording is available at soil class D) in a specific area in Turkey. It also conducts response spectrum analyses of 5, 10 and 13 floor reinforced concrete building models under EC8, TBEC and actual spectral response curves. The results indicate that the EC8 and especially TBEC given design response spectra cannot be able to represent the mean actual spectral acceleration curves at soil classes A, B and C. This is particularly observed at periods higher than 0.3 s, 0.42 s and 0.55 s for the TBEC design response spectra, 0.54 s, 0.65 s and 0.84 s for the EC8 design response spectra at soil classes A, B and C, respectively. This is also reflected to the shear forces of three building models, as actual spectral acceleration curves lead to the highest shear forces, followed by the shear forces obtained from EC8 and, then, the TBEC design response spectra.

Evaluation of seismic performance factors for steel DIAGRID structural system design

  • Lee, Dongkyu;Shin, Soomi;Ju, Youngkyu
    • Earthquakes and Structures
    • /
    • v.10 no.4
    • /
    • pp.735-755
    • /
    • 2016
  • This article presents a proposed analytical methodology to determine seismic force-resisting system R-values for steel diagrid framed systems. As current model building codes do not explicitly address the seismic design performance factors for this new and emerging structural system, the purpose of this study is to provide a sound and reliable basis for defining such seismic design parameters. An approach and methodology for the reliable determination of seismic performance factors for use in the design of steel diagrid framed structural systems is proposed. The recommended methodology is based on current state-of-the-art and state-of-the practice methods including structural nonlinear dynamic analysis techniques, testing data requirements, building code design procedures and earthquake ground motion characterization. In determining appropriate seismic performance factors (R, ${\Omega}_O$, $C_d$) for new archetypical building structural systems, the methodology defines acceptably low values of probability against collapse under maximum considered earthquake ground shaking.

Method of Evaluation of the Strength Required in Current Seismic Design Code (현행 내진설계 규준에서 요구되는 수평강도의 평가 방법)

  • 한상환
    • Proceedings of the Earthquake Engineering Society of Korea Conference
    • /
    • 1997.10a
    • /
    • pp.193-200
    • /
    • 1997
  • Current seismic design code is based of the assumption that the designed structures would be behaved inelastically during a severe earthquake ground motion. For this reason, seismic design forces calculated by seismic codes are much lower than the forces generated by design earthquakes which makes structures responding elastically. Present procedures for calculating seismic design forces are based on the use of elastic spectra reduced by a strength reduction factors known as "response modificaion factor". Because these factors were determined empirically, it is difficult to know how much inelastic behaviors of the structures exhibit. In this study, base shear forces required to maintain target ductility ratio were first calculated from nonlinear dynamic analysis on the single degree of freedom system. And then, base shear foeces specified in seismic design code compare with above results. If the strength(base shear) required strength should be filled by overstrength and/or redundancy. Therefore, overstrength of moment resisting frame structure will be estimated from the results of static nonlinear analysis(push-over analysis).analysis).

  • PDF

Evaluation of the Current Seismic Design Procedures Based on the Seismic Performance of the Building Located in the Same Seismic Area (동일한 지진구역에 위치한 건축 구조물의 내진거동을 기초로한 기존 내진설계 평가)

  • 한상환;이리형
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 1997.04a
    • /
    • pp.160-166
    • /
    • 1997
  • Current Seismic Design Procedure has been developed and improved mostly based on the experiences of the past earthquakes. Many engineers and researchers believe that the seismic codes and provisions are adequate for the basic objective of the code which is "life-safe". However they doubt the performance of the structure during the earthquake. The seismic code seems the black box for the designers which means it is not transparent since the designer can not predict the level of the damage of the structure under future earthquakes. This purpose of this study is to check the validity of the current seismic design procedures. Two structures with different heights are designed and their seismic performances are evaluated for this purpose. Both structures are assumed to be located at the same strong seismic zone.

  • PDF

A Study on Seismic Performance of Spiral Prer (나선철근교각의 내진성능에 관한 연구)

  • 배성용;김광수;이형준;이재훈
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2000.04a
    • /
    • pp.363-368
    • /
    • 2000
  • The Korean Bridge Design Standard Specifications adopted the seismic design requirements in 1992. However, The current seismic design requirements for bridges are based on the USA seismic codes for sever earthquake. This provides the basic factors that affects the performance of spiral reinforced concrete piers for seismic loading, and The specimen tests are performed based on load-displacement, effective stiffness and displacement ductility, etc. The quasi-static test was adopted in order to investigate seismic performance of the spiral reinforced concrete pier specimens which had different transverse steel amount, spacing and longitudinal steel ratio under different axial load levels. This study is concluded that seismic design for transverse reinforcement content of spiral reinforced concrete column has influenced on axial load and effective stiffness etc.

  • PDF

The questionable effectiveness of code accidental eccentricity

  • Ouazir, Abderrahmane;Hadjadj, Asma;Gasmi, Hatem;Karoui, Hatem
    • Structural Engineering and Mechanics
    • /
    • v.83 no.1
    • /
    • pp.45-51
    • /
    • 2022
  • The need to account for accidental torsion in seismic design is no longer debatable, however, the seismic codes' requirement for accidental eccentricity has recently faced criticism. In order to get as close to real conditions as possible, this study investigated the impact of accidental torsion in symmetric RC multistory buildings caused by one of its many sources, the torsional earthquake component, and compared the results to those obtained by using the accidental eccentricity recommended by the codes (shifting the center of mass). To cover a wide range of frequencies and site conditions, two types of torsion seismic components were used: a recorded torsion accelerogram and five others generated using translation accelerograms. The main parameters that govern seismic responses, such as the number of stories (to account for the influence of all modes of vibration) and the frequency ratio (Ω) variation, were studied in terms of inter-story drift and displacement responses, as well as torsional moment. The results show that the eccentricity ratio of 5% required by most codes for accidental torsion should be reexamined and that it is prudent for computer analysis to use the static moment approach to implement the accidental eccentricity while waiting for new seismic code recommendations on the subject.