• 제목/요약/키워드: Seismic Coefficient

검색결과 308건 처리시간 0.025초

각종 매설관의 동적거동에 대한 곡선적합식의 개발 (Development of Curve Fitted Equations for Dynamic Behavior of Various Buried Pipelines)

  • 김성반;정진호;정두회;이광열
    • 한국지진공학회논문집
    • /
    • 제10권4호
    • /
    • pp.25-33
    • /
    • 2006
  • 지진해일 위험재해도의 작성과 재해경감대책 수립을 위해서는 연안역의 상세한 수심 및 지형을 이용한 시뮬레이션이 요구되고 있다. 본 연구에서는 Beowulf 병렬계산을 통해 동해 전 영역에서 정밀산정이 가능한 병렬유한요소모형을 이용하여 1993년 7월 12일 동해안에 내습한 지진해일에 대한 시뮬레이션을 수행하고, 그 계산 결과와 관측치와의 비교결과를 제시한다. 또한, 해안에서의 지진 해일고의 통계적 분포에 대해 논하며, 해안에서의 지진해일고의 파고분포가 전반적으로 대수정규분포를 따르는 경향을 제시하였다.

An analytical technique for estimation of seismic displacements in reinforced slopes based on horizontal slices method (HSM)

  • Ghanbari, Ali;Khalilpasha, Abbas;Sabermahani, Mohsen;Heydari, Babak
    • Geomechanics and Engineering
    • /
    • 제5권2호
    • /
    • pp.143-164
    • /
    • 2013
  • Calculation of seismic displacements in reinforced slopes plays a crucial role in appropriate design of these structures however current analytical methods result indifferent values for permanent displacements of the slope. In this paper, based on limit equilibrium and using the horizontal slices method, a new formulation has been proposed for estimating the seismic displacements of a reinforced slope under earthquake records. In this method, failure wedge is divided into a number of horizontal slices. Assuming linear variations for tensile forces of reinforcements along the height of the slope, the coefficient of yield acceleration has been estimated. The simplicity of calculations and taking into account the frequency content of input triggers are among the advantages of the present formulation. Comparison of the results shows that the yield acceleration calculated by the suggested method is very close to the values resulted from other techniques. On the other hand, while there is a significant difference between permanent displacements, the values obtained from the suggested method place somehow between those calculated by the other techniques.

Experimental research on seismic behavior of SRC-RC transfer columns

  • Wu, Kai;Xue, Jianyang;Nan, Yang;Zhao, Hongtie
    • Steel and Composite Structures
    • /
    • 제21권1호
    • /
    • pp.157-175
    • /
    • 2016
  • It was found that the lateral stiffness changes obvious at the transfer position of the section configuration from SRC to RC. This particular behavior leads to that the transfer columns become as the important elements in SRC-RC hybrid structures. A comprehensive study was conducted to investigate the seismic behavior of SRC-RC transfer columns based on a low cyclic loading test of 16 transfer columns compared with 1 RC column. Test results shows three failure modes for transfer columns, which are shear failure, bond failure and bend failure. Its seismic behavior was completely analyzed about the failure mode, hysteretic and skeleton curves, bearing capacity deformation ability, stiffness degradation and energy dissipation. It is further determined that displacement ductility coefficient of transfer columns changes from 1.97 to 5.99. The stiffness of transfer columns are at the interval of SRC and RC, and hence transfer columns can play the role of transition from SRC to RC. All specimens show similar discipline of stiffness degradation and the process can be divided into three parts. Some specimens of transfer column lose bearing capacity swiftly after shear cracking and showed weak energy dissipation ability, but the others show better ability of energy dissipation than RC column.

Experimental research on seismic behavior of a composite RCS frame

  • Men, Jinjie;Zhang, Yarong;Guo, Zhifeng;Shi, Qingxuan
    • Steel and Composite Structures
    • /
    • 제18권4호
    • /
    • pp.971-983
    • /
    • 2015
  • To promote greater acceptance and use of composite RCS systems, a two-bay two-story frame specimen with improved composite RCS joint details was tested in the laboratory under reversed cyclic loading. The test revealed superior seismic performance with stable load versus story drift response and excellent deformation capacity for an inter-story drift ratio up to 1/25. It was found that the failure process of the frame meets the strong-column weak-beam criterion. Furthermore, cracking inter-story drift ratio and ultimate inter-story drift ratio both satisfy the limitation prescribed by the design code. Additionally, inter-story drift ratios at yielding and peak load stage provide reference data for Performance-Based Seismic Design (PBSD) approaches for composite RCS frames. An advantage over conventional reinforced concrete and steel moment frame systems is that the displacement ductility coefficient of the RCS frame system is much larger. To conclude, the test results prove that composite RCS frame systems perform satisfactorily under simulated earthquake action, which further validates the reliability of this innovative system. Based on the test result, some suggestions are presented for the design of composite RCS frame systems.

Seismic evaluation of soil-foundation-structure interaction: Direct and Cone model

  • Khazaei, Jahangir;Amiri, Azadeh;Khalilpour, Mehrdad
    • Earthquakes and Structures
    • /
    • 제12권2호
    • /
    • pp.251-262
    • /
    • 2017
  • The present research intends to study the effects of the seismic soil-foundation-structure interaction (SFSI) on the dynamic response of various buildings. Two methods including direct and Cone model were studied through 3D finite element method using ABAQUS software. Cone model as an approximate method to consider the SFSI phenomenon was developed and evaluated for both high and low rise buildings. Effect of soil nonlinearity, foundation rigidity and embedment as well as friction coefficient between soil-foundation interfaces during seismic excitation are investigated. Validity and performance of both approaches are evaluated as reference graphs for Cone model and infinite boundary condition, soil nonlinearity and amplification factor for direct method. A series of calculations by DeepSoil for inverse earthquake record modification was conducted. A comparison of the two methods was carried out by root-mean-square-deviation (RMSD) tool for maximum lateral displacement and story shear forces which verifies that Cone model results have good agreement with direct method. It was concluded that Cone method is a convenient, fast and rather accurate method as an approximate way to count for soil media.

Probabilistic analysis of peak response to nonstationary seismic excitations

  • Wang, S.S.;Hong, H.P.
    • Structural Engineering and Mechanics
    • /
    • 제20권5호
    • /
    • pp.527-542
    • /
    • 2005
  • The main objective of this study is to examine the accuracy of the complete quadratic combination (CQC) rule with the modal responses defined by the ordinates of the uniform hazard spectra (UHS) to evaluate the peak responses of the multi-degree-of-freedom (MDOF) systems subjected to nonstationary seismic excitations. For the probabilistic analysis of the peak responses, it is considered that the seismic excitations can be modeled using evolutionary power spectra density functions with uncertain model parameters. More specifically, a seismological model and the Kanai-Tajimi model with the boxcar or the exponential modulating functions were used to define the evolutionary power spectral density functions in this study. A set of UHS was obtained based on the probabilistic analysis of transient responses of single-degree-of-freedom systems subjected to the seismic excitations. The results of probabilistic analysis of the peak responses of MDOF systems were obtained, and compared with the peak responses calculated by using the CQC rule with the modal responses given by the UHS. The comparison seemed to indicate that the use of the CQC rule with the commonly employed correlation coefficient and the peak modal responses from the UHS could lead to significant under- or over-estimation when contributions from each of the modes are similarly significant.

각종 매설관의 내진성능평가를 위한 곡선적합식의 개발 (Development of Curve Fitted Equations for Seismic Performance Evaluation of Various Buried Pipelines)

  • 정진호;박병호;김성반
    • 한국지반공학회:학술대회논문집
    • /
    • 한국지반공학회 2006년도 춘계 학술발표회 논문집
    • /
    • pp.1326-1333
    • /
    • 2006
  • Purpose of this research is a development for the curve fitted equations that can improve practical calculation and work application when seismic performance has been evaluated and this work has been made a study of the dynamic response under various boundary conditions of buried pipelines to compare the dynamic behavior of concrete pipe and steel pipe, FRP pipe. This research have been developed curve fitted equations that can be improving efficiency and practicality. Using a nonlinear least square method, and after testing several different exponential equations, Proposed the curve fitted equations to give the best result and constant value by the propagation velocities. With these results, dynamic response analysis and seismic performance evaluation have been achieved on concrete pipe, steel pipe and FRP pipe that have a various boundary conditions. Degree of a polynomial expression and coefficient value by propagation velocity have been calculated when using the curve fitting equations.

  • PDF

Experimental study on seismic performance of steel reinforced concrete T-shaped columns

  • Liu, Zuqiang;Zhou, Chaofeng;Xue, Jianyang;Leon, Roberto T.
    • Steel and Composite Structures
    • /
    • 제36권3호
    • /
    • pp.339-353
    • /
    • 2020
  • This study investigates the seismic performance of steel reinforced concrete (SRC) T-shaped columns under low cyclic loading tests. Based on test results of ten half-scale column specimens, failure patterns, hysteretic behavior, skeleton curves, ultimate strength, ductility, stiffness degradation and energy dissipation capacity were analyzed. The main variables included loading angles, axial compression ratios and steel ratios. The test results show that the average values of the ductility factor and the equivalent viscous damping coefficient with respect to the failure of the columns were 5.23 and 0.373, respectively, reflecting good seismic performance. The ductility decreased and the initial stiffness increased as the axial compression ratio of the columns increased. The strength increased with increasing steel ratio, as expected. The columns displaced along the web had higher strength and initial stiffness, while the columns displaced along the flange had better ductility and energy dissipation capacity. Based on the test and analysis results, a formula is proposed to calculate the effective stiffness of SRC T-shaped columns.

탄성파탐사에 의한 토양층 지반진동의 감쇠연구 (A Study on Attenuation of Ground Vibration Using Hammer Generated Seismic Wave)

  • 서만호;손호웅
    • 지질공학
    • /
    • 제6권2호
    • /
    • pp.95-102
    • /
    • 1996
  • 지반진동이 지표적인 토양에서 거리에 따라 어떻게 감소되는지 밝히기 위하여 탄성파의 진폭변화를 측정하였다.야외에서 12-ch 탄성파 탐지기를 이용하여 디지털 자료로 자료로 기록한 증폭되지 않은 진폭자료를 분석하였다. 탄성파의 주파수분석결과 최대 스펙트럼 진폭은 40Hz부근에서 나타나고 있다. 조사지역의 감쇠경향은 지수함수적임을 보여주고 있으며 탐사지역의 지반감쇠 요소들을 계산한 결과 기하감쇠지수 (n)는 0.25,내부감쇠지수(a)는 0.13-0.20임을 보여주고 있다. 습윤토양지역에서는 내부감쇠지수 (a)가 0.13, 식생토양지역에서는 0.20를 보여 습윤토양에서보다 식생발달 토양지역에서 지반진동이 훨씬 빨리 감쇠하는 현상을 보인다. 또한 탄성파 자료분석을 통한 탄성파전파속도와 주파수분석을 이용하여 흙의 평균 내부감쇠정수(h)가 0.094임을 밝혔다.

  • PDF

Seismic response control of benchmark highway bridge using variable dampers

  • Madhekar, S.N.;Jangid, R.S.
    • Smart Structures and Systems
    • /
    • 제6권8호
    • /
    • pp.953-974
    • /
    • 2010
  • The performance of variable dampers for seismic protection of the benchmark highway bridge (phase I) under six real earthquake ground motions is presented. A simplified lumped mass finite-element model of the 91/5 highway bridge in Southern California is used for the investigation. A variable damper, developed from magnetorheological (MR) damper is used as a semi-active control device and its effectiveness with friction force schemes is investigated. A velocity-dependent damping model of variable damper is used. The effects of friction damping of the variable damper on the seismic response of the bridge are examined by taking different values of friction force, step-coefficient and transitional velocity of the damper. The seismic responses with variable dampers are compared with the corresponding uncontrolled case, and controlled by alternate sample control strategies. The results of investigation clearly indicate that the base shear, base moment and mid-span displacement are substantially reduced. In particular, the reduction in the bearing displacement is quite significant. The friction and the two-step friction force schemes of variable damper are found to be quite effective in reducing the peak response quantities of the bridge to a level similar to or better than that of the sample passive, semi-active and active controllers.