• 제목/요약/키워드: Segmentation processing

검색결과 1,038건 처리시간 0.027초

Small Object Segmentation Based on Visual Saliency in Natural Images

  • Manh, Huynh Trung;Lee, Gueesang
    • Journal of Information Processing Systems
    • /
    • 제9권4호
    • /
    • pp.592-601
    • /
    • 2013
  • Object segmentation is a challenging task in image processing and computer vision. In this paper, we present a visual attention based segmentation method to segment small sized interesting objects in natural images. Different from the traditional methods, we first search the region of interest by using our novel saliency-based method, which is mainly based on band-pass filtering, to obtain the appropriate frequency. Secondly, we applied the Gaussian Mixture Model (GMM) to locate the object region. By incorporating the visual attention analysis into object segmentation, our proposed approach is able to narrow the search region for object segmentation, so that the accuracy is increased and the computational complexity is reduced. The experimental results indicate that our proposed approach is efficient for object segmentation in natural images, especially for small objects. Our proposed method significantly outperforms traditional GMM based segmentation.

깊이 슈퍼 픽셀을 이용한 실내 장면의 의미론적 분할 방법 (Semantic Segmentation of Indoor Scenes Using Depth Superpixel)

  • 김선걸;강행봉
    • 한국멀티미디어학회논문지
    • /
    • 제19권3호
    • /
    • pp.531-538
    • /
    • 2016
  • In this paper, we propose a novel post-processing method of semantic segmentation from indoor scenes with RGBD inputs. For accurate segmentation, various post-processing methods such as superpixel from color edges or Conditional Random Field (CRF) method considering neighborhood connectivity have been used, but these methods are not efficient due to high complexity and computational cost. To solve this problem, we maximize the efficiency of post processing by using depth superpixel extracted from disparity image to handle object silhouette. Our experimental results show reasonable performances compared to previous methods in the post processing of semantic segmentation.

Accurate Segmentation Algorithm of Video Dynamic Background Image Based on Improved Wavelet Transform

  • Ming, Ming
    • Journal of Information Processing Systems
    • /
    • 제18권5호
    • /
    • pp.711-718
    • /
    • 2022
  • In this paper, an accurate segmentation algorithm of video dynamic background image (VDBI) based on improved wavelet transform is proposed. Based on the smooth processing of VDBI, the traditional wavelet transform process is improved, and the two-layer decomposition of dynamic image is realized by using two-dimensional wavelet transform. On the basis of decomposition results and information enhancement processing, image features are detected, feature points are extracted, and quantum ant colony algorithm is adopted to complete accurate segmentation of the image. The maximum SNR of the output results of the proposed algorithm can reach 73.67 dB, the maximum time of the segmentation process is only 7 seconds, the segmentation accuracy shows a trend of decreasing first and then increasing, and the global maximum value can reach 97%, indicating that the proposed algorithm effectively achieves the design expectation.

Unsupervised Segmentation of Images Based on Shuffled Frog-Leaping Algorithm

  • Tehami, Amel;Fizazi, Hadria
    • Journal of Information Processing Systems
    • /
    • 제13권2호
    • /
    • pp.370-384
    • /
    • 2017
  • The image segmentation is the most important operation in an image processing system. It is located at the joint between the processing and analysis of the images. Unsupervised segmentation aims to automatically separate the image into natural clusters. However, because of its complexity several methods have been proposed, specifically methods of optimization. In our work we are interested to the technique SFLA (Shuffled Frog-Leaping Algorithm). It's a memetic meta-heuristic algorithm that is based on frog populations in nature searching for food. This paper proposes a new approach of unsupervised image segmentation based on SFLA method. It is implemented and applied to different types of images. To validate the performances of our approach, we performed experiments which were compared to the method of K-means.

SEL-RefineMask: A Seal Segmentation and Recognition Neural Network with SEL-FPN

  • Dun, Ze-dong;Chen, Jian-yu;Qu, Mei-xia;Jiang, Bin
    • Journal of Information Processing Systems
    • /
    • 제18권3호
    • /
    • pp.411-427
    • /
    • 2022
  • Digging historical and cultural information from seals in ancient books is of great significance. However, ancient Chinese seal samples are scarce and carving methods are diverse, and traditional digital image processing methods based on greyscale have difficulty achieving superior segmentation and recognition performance. Recently, some deep learning algorithms have been proposed to address this problem; however, current neural networks are difficult to train owing to the lack of datasets. To solve the afore-mentioned problems, we proposed an SEL-RefineMask which combines selector of feature pyramid network (SEL-FPN) with RefineMask to segment and recognize seals. We designed an SEL-FPN to intelligently select a specific layer which represents different scales in the FPN and reduces the number of anchor frames. We performed experiments on some instance segmentation networks as the baseline method, and the top-1 segmentation result of 64.93% is 5.73% higher than that of humans. The top-1 result of the SEL-RefineMask network reached 67.96% which surpassed the baseline results. After segmentation, a vision transformer was used to recognize the segmentation output, and the accuracy reached 91%. Furthermore, a dataset of seals in ancient Chinese books (SACB) for segmentation and small seal font (SSF) for recognition were established which are publicly available on the website.

조합형 문자구성을 이용한 문서 인식 알고리즘 (Development of an Algorithm for Korean Letter Recognition using Letter Component Analysis)

  • 김영재;이호재;김희식
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 1995년도 추계학술대회 논문집
    • /
    • pp.427-430
    • /
    • 1995
  • This paper proposes a new image processing algorithm to recognize korean documents. It take out the region of syllable area from input character image, then it makes recognition of a consonant and a vowel in the character. A precision segmentation is very important to recognize the input character. The input image has 8-bit gray scaled resolution. Not only the shape but also vertical and horizontal lines dispersion graph are used for segmentation. Theresult shows a higher accuracy of character segmentation.

  • PDF

A methodology for spatial distribution of grain and voids in self compacting concrete using digital image processing methods

  • Onal, Okan;Ozden, Gurkan;Felekoglu, Burak
    • Computers and Concrete
    • /
    • 제5권1호
    • /
    • pp.61-74
    • /
    • 2008
  • Digital image processing algorithms for the analysis and characterization of grains and voids in cemented materials were developed using toolbox functions of a mathematical software package. Utilization of grayscale, color and watershed segmentation algorithms and their performances were demonstrated on artificially prepared self-compacting concrete (SCC) samples. It has been found that color segmentation was more advantageous over the gray scale segmentation for the detection of voids whereas the latter method provided satisfying results for the aggregate grains due to the sharp contrast between their colors and the cohesive matrix. The watershed segmentation method, on the other hand, appeared to be very efficient while separating touching objects in digital images.

Image Semantic Segmentation Using Improved ENet Network

  • Dong, Chaoxian
    • Journal of Information Processing Systems
    • /
    • 제17권5호
    • /
    • pp.892-904
    • /
    • 2021
  • An image semantic segmentation model is proposed based on improved ENet network in order to achieve the low accuracy of image semantic segmentation in complex environment. Firstly, this paper performs pruning and convolution optimization operations on the ENet network. That is, the network structure is reasonably adjusted for better results in image segmentation by reducing the convolution operation in the decoder and proposing the bottleneck convolution structure. Squeeze-and-excitation (SE) module is then integrated into the optimized ENet network. Small-scale targets see improvement in segmentation accuracy via automatic learning of the importance of each feature channel. Finally, the experiment was verified on the public dataset. This method outperforms the existing comparison methods in mean pixel accuracy (MPA) and mean intersection over union (MIOU) values. And in a short running time, the accuracy of the segmentation and the efficiency of the operation are guaranteed.

Mobile Palmprint Segmentation Based on Improved Active Shape Model

  • Gao, Fumeng;Cao, Kuishun;Leng, Lu;Yuan, Yue
    • Journal of Multimedia Information System
    • /
    • 제5권4호
    • /
    • pp.221-228
    • /
    • 2018
  • Skin-color information is not sufficient for palmprint segmentation in complex scenes, including mobile environments. Traditional active shape model (ASM) combines gray information and shape information, but its performance is not good in complex scenes. An improved ASM method is developed for palmprint segmentation, in which Perux method normalizes the shape of the palm. Then the shape model of the palm is calculated with principal component analysis. Finally, the color likelihood degree is used to replace the gray information for target fitting. The improved ASM method reduces the complexity, while improves the accuracy and robustness.

연속 영상 기반 실시간 객체 분할 (Real-Time Object Segmentation in Image Sequences)

  • 강의선;유승훈
    • 정보처리학회논문지B
    • /
    • 제18B권4호
    • /
    • pp.173-180
    • /
    • 2011
  • 본 논문은 GPU(Graphics Processing Unit) 에서 CUDA(Compute Unified Device Architecture)를 사용하여 실시간으로 객체를 분할하는 방법을 소개한다. 최근에 감시 시스템, 오브젝트 추적, 모션 분석 등의 많은 응용 프로그램들은 실시간 처리가 요구된다. 이러한 단계의 선행부분인 객체 분할 기법은 기존 CPU 기반의 시스템으로는 실시간 처리에 제약이 발생한다. NVIDIA에서는 Parallel Processing for General Computation 을 위해 그래픽 하드웨어 제약을 개선한 CUDA platform을 제공하고 있다. 본 논문에서는 객체 추출 단계에 대표적인 적응적 가우시안 혼합 배경 모델링(Adaptive Gaussian Mixture Background Modeling) 알고리즘과 Classification 기법으로 사용되는 CCL (Connected Component Labeling) 알고리즘을 적용하였다. 본 논문은 2.4GHz를 갖는 Core2 Quad 프로세서와 비교하여 평가하였고 그 결과 3~4배 이상의 성능향상을 확인할 수 있었다.