• Title/Summary/Keyword: Segmentation algorithm

Search Result 1,339, Processing Time 0.024 seconds

A Study on the Edge Detection using Region Segmentation of the Mask (마스크의 영역 분할을 이용한 에지 검출에 관한 연구)

  • Lee, Chang-Young;Kim, Nam-Ho
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.17 no.3
    • /
    • pp.718-723
    • /
    • 2013
  • In general, the boundary portion of the background and objects are the rapidly changing point and an important elements to analyze characteristics of image. Using these boundary parts, information about the position or shape of an object in the image are detected, and many studies have been continued in order to detect it. Existing methods are that implementation of algorithm is comparatively simple and its processing speed is fast, but edge detection characteristics is insufficient because weighted values are applied to all the pixels equally. Therefore, in this paper, we proposed an algorithm using region segmentation of the mask in order to adaptive edge detection according to image, and the results processed by proposed algorithm indicated superior edge detection characteristics in edge area.

Adaptive Object-Region-Based Image Pre-Processing for a Noise Removal Algorithm

  • Ahn, Sangwoo;Park, Jongjoo;Luo, Linbo;Chong, Jongwha
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.7 no.12
    • /
    • pp.3166-3179
    • /
    • 2013
  • A pre-processing system for adaptive noise removal is proposed based on the principle of identifying and filtering object regions and background regions. Human perception of images depends on bright, well-focused object regions; these regions can be treated with the best filters, while simpler filters can be applied to other regions to reduce overall computational complexity. In the proposed method, bright region segmentation is performed, followed by segmentation of object and background regions. Noise in dark, background, and object regions is then removed by the median, fast bilateral, and bilateral filters, respectively. Simulations show that the proposed algorithm is much faster than and performs nearly as well as the bilateral filter (which is considered a powerful noise removal algorithm); it reduces computation time by 19.4 % while reducing PSNR by only 1.57 % relative to bilateral filtering. Thus, the proposed algorithm remarkably reduces computation while maintaining accuracy.

Gamma correction FCM algorithm with conditional spatial information for image segmentation

  • Liu, Yang;Chen, Haipeng;Shen, Xuanjing;Huang, Yongping
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.12 no.9
    • /
    • pp.4336-4354
    • /
    • 2018
  • Fuzzy C-means (FCM) algorithm is a most usually technique for medical image segmentation. But conventional FCM fails to perform well enough on magnetic resonance imaging (MRI) data with the noise and intensity inhomogeneity (IIH). In the paper, we propose a Gamma correction conditional FCM algorithm with spatial information (GcsFCM) to solve this problem. Firstly, the pre-processing, Gamma correction, is introduced to enhance the details of images. Secondly, the spatial information is introduced to reduce the effect of noise. Then we introduce the effective neighborhood mechanism into the local space information to improve the robustness for the noise and inhomogeneity. And the mechanism describes the degree of participation in generating local membership values and building clusters. Finally, the adjustment mechanism and the spatial information are combined into the weighted membership function. Experimental results on four image volumes with noise and IIH indicate that the proposed GcsFCM algorithm is more effective and robust to noise and IIH than the FCM, sFCM and csFCM algorithms.

The Algorithm of Protein Spots Segmentation using Watersheds-based Hierarchical Threshold (Watersheds 기반 계층적 이진화를 이용한 단백질 반점 분할 알고리즘)

  • Kim Youngho;Kim JungJa;Kim Daehyun;Won Yonggwan
    • The KIPS Transactions:PartB
    • /
    • v.12B no.3 s.99
    • /
    • pp.239-246
    • /
    • 2005
  • Biologist must have to do 2DGE biological experiment for Protein Search and Analysis. This experiment coming into being 2 dimensional image. 2DGE (2D Gel Electrophoresis : two dimensional gel electrophoresis) image is the most widely used method for isolating of the objective protein by comparative analysis of the protein spot pattern in the gel plane. The process of protein spot analysis, firstly segment protein spots that are spread in 2D gel plane by image processing and can find important protein spots through comparative analysis with protein pattern of contrast group. In the algorithm which detect protein spots, previous 2DGE image analysis is applies gaussian fitting, however recently Watersheds region based segmentation algorithm, which is based on morphological segmentation is applied. Watersheds has the benefit that segment rapidly needed field in big sized image, however has under-segmentation and over-segmentation of spot area when gray level is continuous. The drawback was somewhat solved by marker point institution, but needs the split and merge process. This paper introduces a novel marker search of protein spots by watersheds-based hierarchical threshold, which can resolve the problem of marker-driven watersheds.

Effective Object Recognition based on Physical Theory in Medical Image Processing (의료 영상처리에서의 물리적 이론을 활용한 객체 유효 인식 방법)

  • Eun, Sung-Jong;WhangBo, Taeg-Keun
    • The Journal of the Korea Contents Association
    • /
    • v.12 no.12
    • /
    • pp.63-70
    • /
    • 2012
  • In medical image processing field, object recognition is usually processed based on region segmentation algorithm. Region segmentation in the computing field is carried out by computerized processing of various input information such as brightness, shape, and pattern analysis. If the information mentioned does not make sense, however, many limitations could occur with region segmentation during computer processing. Therefore, this paper suggests effective region segmentation method based on R2-map information within the magnetic resonance (MR) theory. In this study, the experiment had been conducted using images including the liver region and by setting up feature points of R2-map as seed points for 2D region growing and final boundary correction to enable region segmentation even when the border line was not clear. As a result, an average area difference of 7.5%, which was higher than the accuracy of conventional exist region segmentation algorithm, was obtained.

MRI Data Segmentation Using Fuzzy C-Mean Algorithm with Intuition (직관적 퍼지 C-평균 모델을 이용한 자기 공명 영상 분할)

  • Kim, Tae-Hyun;Park, Dong-Chul;Jeong, Tai-Kyeong;Lee, Yun-Sik;Min, Soo-Young
    • Journal of IKEEE
    • /
    • v.15 no.3
    • /
    • pp.191-197
    • /
    • 2011
  • An image segmentation model using fuzzy c-means with intuition (FCM-I) model is proposed for the segmentation of magnetic resonance image in this paper. In FCM-I, a measurement called intuition level is adopted so that the intuition level helps to alleviate the effect of noises. A practical magnetic resonance image data set is used for image segmentation experiment and the performance is compared with those of some conventional algorithms. Results show that the segmentation method based on FCM-I compares favorably to several conventional clustering algorithms. Since FCM-I produces cluster prototypes less sensitive to noises and to the selection of involved parameters than the other algorithms, FCM-I is a good candidate for image segmentation problems.

A Multiresolution Image Segmentation Method using Stabilized Inverse Diffusion Equation (안정화된 역 확산 방정식을 사용한 다중해상도 영상 분할 기법)

  • Lee Woong-Hee;Kim Tae-Hee;Jeong Dong-Seok
    • Journal of the Institute of Electronics Engineers of Korea CI
    • /
    • v.41 no.1
    • /
    • pp.38-46
    • /
    • 2004
  • Image segmentation is the task which partitions the image into meaningful regions and considered to be one of the most important steps in computer vision and image processing. Image segmentation is also widely used in object-based video compression such as MPEG-4 to extract out the object regions from the given frame. Watershed algorithm is frequently used to obtain the more accurate region boundaries. But, it is well known that the watershed algorithm is extremely sensitive to gradient noise and usually results in oversegmentation. To solve such a problem, we propose an image segmentation method which is robust to noise by using stabilized inverse diffusion equation (SIDE) and is more efficient in segmentation by employing multiresolution approach. In this paper, we apply both the region projection method using labels of adjacent regions and the region merging method based on region adjacency graph (RAG). Experimental results on noisy image show that the oversegmenation is reduced and segmentation efficiency is increased.

Image Segmentation of Lung Parenchyma using Improved Deformable Model on Chest Computed Tomography (개선된 가변형 능동모델을 이용한 흉부 컴퓨터단층영상에서 폐 실질의 분할)

  • Kim, Chang-Soo;Choi, Seok-Yoon
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.13 no.10
    • /
    • pp.2163-2170
    • /
    • 2009
  • We present an automated, energy minimized-based method for Lung parenchyma segmenting Chest Computed Tomography(CT) datasets. Deformable model is used for energy minimized segmentation. Quantitative knowledge including expected volume, shape of Chest CT provides more feature constrain to diagnosis or surgery operation planning. Segmentation subdivides an lung image into its consistent regions or objects. Depends on energy-minimizing, the level detail image of subdivision is carried. Segmentation should stop when the objects or region of interest in an application have been detected. The deformable model that has attracted the most attention to date is popularly known as snakes. Snakes or deformable contour models represent a special case of the general multidimensional deformable model theory. This is used extensively in computer vision and image processing applications, particularly to locate object boundaries, in the mean time a new type of external force for deformable models, called gradient vector flow(GVF) was introduced by Xu. Our proposed algorithm of deformable model is new external energy of GVF for exact segmentation. In this paper, Clinical material for experiments shows better results of proposal algorithm in Lung parenchyma segmentation on Chest CT.

Hair Classification and Region Segmentation by Location Distribution and Graph Cutting (위치 분포 및 그래프 절단에 의한 모발 분류와 영역 분할)

  • Kim, Yong-Gil;Moon, Kyung-Il
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.22 no.3
    • /
    • pp.1-8
    • /
    • 2022
  • Recently, Google MedeiaPipe presents a novel approach for neural network-based hair segmentation from a single camera input specifically designed for real-time, mobile application. Though neural network related to hair segmentation is relatively small size, it produces a high-quality hair segmentation mask that is well suited for AR effects such as a realistic hair recoloring. However, it has undesirable segmentation effects according to hair styles or in case of containing noises and holes. In this study, the energy function of the test image is constructed according to the estimated prior distributions of hair location and hair color likelihood function. It is further optimized according to graph cuts algorithm and initial hair region is obtained. Finally, clustering algorithm and image post-processing techniques are applied to the initial hair region so that the final hair region can be segmented precisely. The proposed method is applied to MediaPipe hair segmentation pipeline.

Pulse Radar Signal Processing Algorithm for Vehicle Detection (차량검지 시스템을 위한 펄스레이더 신호처리 알고리즘)

  • 고기원;우광준
    • Journal of the Institute of Electronics Engineers of Korea SC
    • /
    • v.41 no.5
    • /
    • pp.9-18
    • /
    • 2004
  • This paper presents a vehicle detecting algorithm using microwave system signals. The Proposed algerian decides the breakpoint of signals using the likelihood criteria. The decided signals are segmented and simplified. The proposed searching algorithm uses the Euclid distance from the weighted signal data. We tested the proposed algorithm to compare with the segmentation which is a method using smoothing and edge detection. We confirm that the proposed algorithm is very useful for detecting vehicles by field test.