• Title/Summary/Keyword: Segmentation, Multiple thresholds

Search Result 5, Processing Time 0.017 seconds

Image segmentation by fusing multiple images obtained under different illumination conditions (조명조건이 다른 다수영상의 융합을 통한 영상의 분할기법)

  • Chun, Yoon-San;Hahn, Hern-Soo
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.1 no.2
    • /
    • pp.105-111
    • /
    • 1995
  • This paper proposes a segmentation algorithm using gray-level discontinuity and surface reflectance ratio of input images obtained under different illumination conditions. Each image is divided by a certain number of subregions based on the thresholds. The thresholds are determined using the histogram of fusion image which is obtained by ANDing the multiple input images. The subregions of images are projected on the eigenspace where their bases are the major eigenvectors of image matrix. Points in the eigenspace are classified into two clusters. Images associated with the bigger cluster are fused by revised ANDing to form a combined edge image. Missing edges are detected using surface reflectance ration and chain code. The proposed algorithm obtains more accurate edge information and allows to more efficiently recognize the environment under various illumination conditions.

  • PDF

Precise Detection of Car License Plates by Locating Main Characters

  • Lee, Dae-Ho;Choi, Jin-Hyuk
    • Journal of the Optical Society of Korea
    • /
    • v.14 no.4
    • /
    • pp.376-382
    • /
    • 2010
  • We propose a novel method to precisely detect car license plates by locating main characters, which are printed with large font size. The regions of the main characters are directly detected without detecting the plate region boundaries, so that license regions can be detected more precisely than by other existing methods. To generate a binary image, multiple thresholds are applied, and segmented regions are selected from multiple binarized images by a criterion of size and compactness. We do not employ any character matching methods, so that many candidates for main character groups are detected; thus, we use a neural network to reject non-main character groups from the candidates. The relation of the character regions and the intensity statistics are used as the input to the neural network for classification. The detection performance has been investigated on real images captured under various illumination conditions for 1000 vehicles. 980 plates were correctly detected, and almost all non-detected plates were so stained that their characters could not be isolated for character recognition. In addition, the processing time is fast enough for a commercial automatic license plate recognition system. Therefore, the proposed method can be used for recognition systems with high performance and fast processing.

Adaptive Multi-class Segmentation Model of Aggregate Image Based on Improved Sparrow Search Algorithm

  • Mengfei Wang;Weixing Wang;Sheng Feng;Limin Li
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.17 no.2
    • /
    • pp.391-411
    • /
    • 2023
  • Aggregates play the skeleton and supporting role in the construction field, high-precision measurement and high-efficiency analysis of aggregates are frequently employed to evaluate the project quality. Aiming at the unbalanced operation time and segmentation accuracy for multi-class segmentation algorithms of aggregate images, a Chaotic Sparrow Search Algorithm (CSSA) is put forward to optimize it. In this algorithm, the chaotic map is combined with the sinusoidal dynamic weight and the elite mutation strategies; and it is firstly proposed to promote the SSA's optimization accuracy and stability without reducing the SSA's speed. The CSSA is utilized to optimize the popular multi-class segmentation algorithm-Multiple Entropy Thresholding (MET). By taking three METs as objective functions, i.e., Kapur Entropy, Minimum-cross Entropy and Renyi Entropy, the CSSA is implemented to quickly and automatically calculate the extreme value of the function and get the corresponding correct thresholds. The image adaptive multi-class segmentation model is called CSSA-MET. In order to comprehensively evaluate it, a new parameter I based on the segmentation accuracy and processing speed is constructed. The results reveal that the CSSA outperforms the other seven methods of optimization performance, as well as the quality evaluation of aggregate images segmented by the CSSA-MET, and the speed and accuracy are balanced. In particular, the highest I value can be obtained when the CSSA is applied to optimize the Renyi Entropy, which indicates that this combination is more suitable for segmenting the aggregate images.

Liver Segmentation and 3D Modeling from Abdominal CT Images

  • Tran, Hong Tai;Oh, A Ran;Na, In Seop;Kim, Soo Hyung
    • Smart Media Journal
    • /
    • v.5 no.1
    • /
    • pp.49-54
    • /
    • 2016
  • Medical image processing is a compulsory process to diagnose many kinds of disease. Therefore, an automatic algorithm for this task is highly demanded as an important part to construct a computer-aided diagnosis system. In this paper, we introduce an automatic method to segment the liver region from 3D abdominal CT images using Otsu method. First, we choose a 2D slice which has most liver information from the whole 3D image. Secondly, on the chosen slice, we enhanced the image based on its intensity using Otsu method with multiple thresholds and use the threshold to enhance the whole 3D image. Then, we apply a liver mask to mark the candidate liver region. After that, we execute the Otsu method again to segment the liver region from the chosen slice and propagate the result to the whole 3D image. Finally, we apply preprocessing on the frontal side of 3D images to crop only the liver region from the image.

Decision of Road Direction by Polygonal Approximation. (다각근사법을 이용한 도로방향 결정)

  • Lim, Young-Cheol;Park, Jong-Gun;Kim, Eui-Sun;Park, Jin-Su;Park, Chang-Seok
    • Proceedings of the KIEE Conference
    • /
    • 1996.07b
    • /
    • pp.1398-1400
    • /
    • 1996
  • In this paper, a method of the decision of the road direction for ALV(Autonomous Land Vehicle) road following by region-based segmentation is presented. The decision of the road direction requires extracting road regions from images in real-time to guide the navigation of ALV on the roadway. Two thresholds to discriminate between road and non-road region in the image are easily decided, using knowledge of problem region and polygonal approximation that searches multiple peaks and valleys in histogram of a road image. The most likely road region of the binary image is selected from original image by these steps. The location of a vanishing point to indicate the direction of the road can be obtained applying it to X-Y profile of the binary road region again. It can successfully steer a ALV along a road reliably, even in the presence of fluctuation of illumination condition, bad road surface condition such as hidden boundaries, shadows, road patches, dirt and water stains, and unusual road condition. Pyramid structure also saves time in processing road images and a real-time image processing for achieving navigation of ALV is implemented. The efficacy of this approach is demonstrated using several real-world road images.

  • PDF