• Title/Summary/Keyword: Seepage model test

Search Result 67, Processing Time 0.019 seconds

A Study on the Characteristics of Infiltration of Sea Dyke by Field Investigation and Seepage Model Test (현장조사와 침투모형시험을 통한 방조제 침투특성 연구)

  • Park, Choon-Sik;Kim, Jong-Hwan;Lee, Sun-Il
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.24 no.4
    • /
    • pp.247-256
    • /
    • 2012
  • The purpose of this study is to decide the permeability and the rate of flow in a way of both site investigation and backward analysis and the most reasonable numerical analysis by performing a seepage model test for measuring the deformation swept volume of the embankment body in order to review a stability of the sea dyke being composed of multi-layers depending on variation of infiltration. As a result of the review, it could be forecasted that sweeping loss would be taken place at the boundary between bed protection works and embankment materials of the sea dyke due to a permeability difference of the multi-layered bed foundation structures and the sea dyke deformation would be occurred as a result thereby. As result of a numerical analysis for the seepage model test, it could be observed that critical velocity method was found to be smaller than the numerical analysis value but its tendency was similar and therefore it was judged that this method could be applied for the actual cross section.

Seepage Analysis of Large-Scale Embankment Model by Revised TDR Sensor (개량된 TDR센서를 이용한 대형 모형제방의 침투 해석)

  • Park, Min-Cheol;Lee, Jong-Wook;Kim, You-Seok;Han, Heui-Soo
    • Journal of the Korean Geotechnical Society
    • /
    • v.28 no.11
    • /
    • pp.53-67
    • /
    • 2012
  • In this research, stainless steel and heat-shrinkage tube were used for new TDR sensing line to solve the problems of ordinary TDR system. The new TDR line improved the sensitivity of water content and endurance, and reduced the data noise. The saturation degree test and acryl model test were done by revised TDR sensor. From the results, without additional data filtering and quantitative analysis, the raw data were separated into 3 zones; saturated, unsaturated and dried zones easily. In addition, the revised TDR sensor was installed in large-scale embankment model to perform the seepage test. The raw data of the model tests showed the distributed seepage behaviors and separated zones clearly, which were almost the same tendencies as the lab test results.

Model Tests of Piping Stability Estimation in dredging ground breakwater (준설토지반 가호안의 파이핑 안정성 평가를 위한 모형실험)

  • Kim, Hong-Taek;Han, Yeon-Jin;Kim, Jong-Seok;Kim, Tae-Hyoung
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2008.03a
    • /
    • pp.689-696
    • /
    • 2008
  • In this study, seepage characteristics of breakwater in dredging ground evaluated for the piping stability estimation by scale model tests. For this, to estimated the seepage characteristics through the model tests and numerical analyses, the engineering stability on piping of breakwater evaluated based on scale model tests and numerical analyses results.

  • PDF

An Artificial Recharge Test and Its Numerical Simulation for the Analysis of Seepage in the Songsanri Tomb Site of Kongju (공주 송산리고분군 누수현상 원인 분석을 위한 인공함양시험 및 수치모델링)

  • 구민호;서만철
    • The Journal of Engineering Geology
    • /
    • v.9 no.1
    • /
    • pp.1-15
    • /
    • 1999
  • An artificial recharge test was performed to analyze the source of seepage observed inside the Songsanri tombs Kongju during the rainy season. In order to simulate simulate the test, a two-dimensional unsaturated groundwater flow model was developed. By the measured water level variation in the observation wells and in the artificail water tank, the model was cailbrated to estimate the model parameters such as fitting parameters in the constitutive relations(n and $\alpha$), the saturated volumetric water content, the residual volumetric water content, and the saturated hydraulic conductivity. Using the calibrated parameters, the recharge test was simulated. The results of the test and simulation show that the major source of the seepage is the downward groundwater flow through cracks in the protection layer the tombs. It was also analyzed by the steady state simulation that, with a perfect protection layer, a long-term precipitation that, with a perfect protection layer, a long-term precitation could cause only 10% increase of the effective saturation around the north side of the Muryong royal tomb by infiltration of the unsaturated groundwater from the North. Therefore, it is concluded that the most urgent protection plan for the tombs with respect to seepage is to reconstruct an effective waterproof-layer rather than a trenched drainage system.

  • PDF

Numerical analysis and fluid-solid coupling model test of filling-type fracture water inrush and mud gush

  • Li, Li-Ping;Chen, Di-Yang;Li, Shu-Cai;Shi, Shao-Shuai;Zhang, Ming-Guang;Liu, Hong-Liang
    • Geomechanics and Engineering
    • /
    • v.13 no.6
    • /
    • pp.1011-1025
    • /
    • 2017
  • The geological conditions surrounding the Jijiapo Tunnel of the Three Gorges Fanba Highway project in Hubei Province are very complex. In this paper, a 3-D physical model was carried out to study the evolution process of filling-type fracture water inrush and mud gush based on the conditions of the section located between 16.040 km and 16.042 km of the Jijiapo Tunnel. The 3-D physical model was conducted to clarify the effect of the self-weight of the groundwater level and tunnel excavation during water inrush and mud gush. The results of the displacement, stress and seepage pressure of fracture and surrounding rock in the physical model were analyzed. In the physical model the results of the model test show that the rock displacement suddenly jumped after sustainable growth, rock stress and rock seepage suddenly decreased after continuous growth before water inrushing. Once water inrush occured, internal displacement of filler increased successively from bottom up, stress and seepage pressure of filler droped successively from bottom up, which presented as water inrush and mud gush of filling-type fracture was a evolving process from bottom up. The numerical study was compared with the model test to demonstrate the effectiveness and accuracy of the results of the model test.

Stability Analysis of the Slopes (사면의 안정해석에 관한 연구)

  • 강우욱;조성섭;지인택
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.31 no.1
    • /
    • pp.58-70
    • /
    • 1989
  • The paper compared the Bishop methed to the Fellenius method in the analysis of slope stability. Laboratory model test was carried out in the case of seepage flow considered. The results obtained from this study were summarized as follows; 1. The slice pieces of 10 were enough to analysis the slope stability. 2. The safety factor. by the Fellenius method was lower than the Bishop method by the 96 to 97% in the case of no seepage flow and by the 95 to 96% in the case of seepage flow considered. 3. Besides the parameter of soil and slope, the safety factor of slope was influenced by the height of slope. This phenomena was distinct in the height of height less than 10 meters. 4. In the case of clay, there was no difference in the safety factor of slope between Fellenius and Bishop rnethod. The safety factors of slope with the seepage flow considered were lower than those with no see-page flow. 5. The influence of cohesion on the safety factor was more significant in the Bishop method than in the Fellenius method. 6. The slope failure of model test of A and B soil samples with high permeability coefficient was taken place slightly in vicinity of toe by the concentration of stress and gradually increased 7. Under condition of same slope height, the shapper the slope, the shorter the radius and the center of critical circle appered downward and finally failure of slope occured inside the slope.

  • PDF

An Experimental Study on Consolidation Effect of Dredged and Reclaimed Ground with PBD using Seepage Pressure (침투압을 이용한 PBD 타입 준설매립 지반의 압밀 효과에 관한 실험적 연구)

  • Lee, Moo-Chul;Park, Min-Chul;Kim, Ju-Hyun;Lee, Song
    • Journal of the Korean GEO-environmental Society
    • /
    • v.13 no.5
    • /
    • pp.13-24
    • /
    • 2012
  • In this study, the in-situ model test has been conducted and used to estimate and analyze consolidation behavior of the ground by using the miniature test that reconstructs economically geotechnical behavior of in-situ full scale structure. To analogize the relation among effective stress, void ratio and coefficient of permeability at the self-weight consolidation stage, the low stress seepage consolidation test has been conducted and the involution function of constitutive equation had been obtained from the result of the curve fitted seepage consolidation test result. As a result of the numerical analysis that had been conducted on the representative section using a constitute equation, final settlement was similar with those of self-weight consolidation of the centrifugal model test. But, it was more or less smaller. It seems that these trends are caused by the difference between estimated values.

Effects of structural characteristics of screw conveyor on spewing during EPB shield tunnelling

  • Xiaochun Zhong;Siyuan Huang;Rongguo Huai;Yikang Hu;Xuquan Chen
    • Geomechanics and Engineering
    • /
    • v.35 no.6
    • /
    • pp.571-580
    • /
    • 2023
  • During EPB shield tunnelling, construction speed and safety are severely affected by spewing. In this study, a theoretical seepage model is established to capture of the effects of screw conveyor geometry and turbulent flow on spewing. Experimental test results are used to verify the proposed theoretical seepage model. It is found that the seepage is greatly affected by the length of screw conveyor and soil permeability. The proposed model can increase the screw conveyor length and reduce soil discharge sections simultaneously, the permeability of treated muck thus decreases by one order of magnitude. By using the proposed theoretical seepage model, the criterion of critical soil permeability used to identify spewing is proposed. When the water head applied at tunnel face reaches 40 m and 50 m, the critical permeability coefficients of treated muck should be less than 10-5 m/s and 10-6 m/s to avoid spewing. For a given permeability coefficient of soil, the water flow rate is overestimated if structural characteristics of screw conveyor is not considered. Consequently, the occurrence of spewing is greatly overestimated, which increases construction cost substantially.

Seepage Characteristics of Embankment as with/without Gravel Layer under the Earth Fill (성토층 하부의 자갈층 유·무에 따른 침투특성 변화)

  • Lee Haeng Woo;Chang Pyoung Wuck;Chang Woong Hee;Kim See-Woon
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.47 no.4
    • /
    • pp.53-61
    • /
    • 2005
  • A series of laboratory tests was carried out fur analyzing of seepage characteristics of two-layers embankment model which consists of gravel and earth fill layers. Gravel layers were built under the earth fill for a half and one-third width of earth fill of the model. Permeability of earth fill was ranged between $5.00\times10^{-5}\~3.00\times10^{-4}\;m/s$.. The tests were performed with hydraulic gradients(i), $0.10\~0.55$. From the test results, hydraulic head of earth fill with gravel layer was 1.6 times higher than that of earth fill without gravel layer. Seepage rate was increased up to $4\~22$ times and safety factor for piping was decreased to $13\~43\;\%$ comparing the earth fill with gravel layer to that without gravel layer. The gravel layer under the earth fill could, in general, give some serious seepage problems to seadike embankment.

The Analysis of the Slope Stability in Embankment(I) (제체의 사면안정 해석(I))

  • 최기봉
    • Journal of the Korean Society of Safety
    • /
    • v.12 no.4
    • /
    • pp.134-142
    • /
    • 1997
  • The stability of an embankment Impounding a water reservoir is highly depend upon the location of seepage line with the embankment. To evaluate the accurate safety factor of an embankment, it is important to illustrate the seepage phenomenon. Of particular interest is the stability following a rapid change (drawdown) of reservoir level Seepage forces in embankments are easily determined if frictional forces are expressed in relation to hydraulic gradient Ⅰ. If a piezometer is inserted into a body of embankment, the level to which free water rises is a measure of the energy at that point. From model test result, it is possible to calculate safety factors of earth embankment. To assure the validity of this research, tests were conducted with numerical experimental models. And the experiment models were constructed with slopes of 1:1.0, 1:1.5, 1:2.0, 1:2.5. Analysis of experimental results, seepage force was analyzed according to downstream time, internal friction angle and cohesion, respectively.

  • PDF