• Title/Summary/Keyword: Seeker Gimbal

Search Result 13, Processing Time 0.033 seconds

Vibration Analysis for Gimbal Structure of a Micro Wave Seeker(II) : Finite Element Analysis (마이크로 웨이브 탐색기의 김발 구조물 진동해석(II) : 유한요소해석)

  • Chang, Young-Bae;Jun, Hong-Gul;Lee, Sock-Kyu;Youn, Jae-Youn;Park, Young-Pil
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2000.06a
    • /
    • pp.514-518
    • /
    • 2000
  • Micro wave seeker consists of a gimbal structure, a antenna and many RF parts. And Missile's propelling powers excite a gimbal structure, a antenna and many RF parts. Therefore, We must inquire into external forces to act on a micro wave seeker before everything. We must inquire into design parameters and then estimate dynamic characteristics of a gimbal structure with a finite element model to reflect part's characteristics for design for a gimbal structure in consideration of vibration features. In this paper, a gimbal structure of a micro wave seeker is modeled in finite element method and then updated by using the experimental modal data. Before we make a finite element model of a gimbal structure of a micro wave seeker, we make a finite element model of a sub-structure and compare with the experimental modal data.

  • PDF

Vibration Analysis for a Gimbal Structure of a Micro Wave Seeker(I) : Experimental Modal Analysis (마이크로 웨이브 탐색기의 김발 구조물 진동해석(I) : 실험모드해석)

  • Lee, Sock-Kyu;Chang, Young-Bae;Lee, Jin-Koo;Kwon, Byung-Hyun;Park, Young-Pil
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2000.06a
    • /
    • pp.508-513
    • /
    • 2000
  • Micro wave seeker detects micro wave signal reflecting from a object and modifies the angle of a antenna in the direction of a reflecting signal. Gimbal structure makes a motion in the direction of an elevation axis and an azimuth axis and change the direction of a missile toward a object. As before, Micro wave seeker is a important part of a missile. Especially, gimbal structure is designed to resist a external force generated by a strong propelling power. For that reason, it is essential to analyze a vibration feature of gimbal structure. In this paper, we analyze dynamic characteristics of a gimbal structure of a micro wave seeker. And we measure frequency response functions of a gimbal structure in order to investigate the effect of a pre-load on bearing.

  • PDF

Analysis of Line of Sight Stabilization Performance based on Direct vs. Indirect of a 2-axis Gimbaled Servo System for Millimeter Wave Seeker (밀리미터파 탐색기 2축 직구동 김발 서보 시스템의 직접 및 간접 시선안정화 성능 분석)

  • Shin, Seungchul;Lee, Sung-Yong
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.67 no.11
    • /
    • pp.1555-1561
    • /
    • 2018
  • Tracking and detecting targets by the millimeter wave seeker is affected by movement of platform. Stabilization equipments use an inertial sensor to compensate for disturbance of stabilizing gimbal or platform. In the direct line of sight stabilization system, an inertial sensor is mounted on inner gimbal to compensate the disturbance directly, so the performance is excellent and the implementation method is simple. However gimbal design requires somewhat larger volume. Since an inertial sensor is mounted on gimbal base in the indirect line of sight stabilization system, additional space of gimbal is not required for the gimbal design. However, this method does not directly compensate for the disturbance of the line of sight stabilization axis, which can degrade performance. In order to perform the tracking performance, two methods are analyzed for line of sight stabilization performance based on direct and indirect of a 2-axis gimbaled servo system for millimeter wave seeker in this study. The simulation and experimental results validate the performance comparison of two methods.

Line-of-Sight Rate for Off-axis Seeker on a 2-axis Gimbal (2축 김발 위에 장착된 비축탐색기를 위한 시선각속도 계산)

  • Kim, Jeong-Hun;Park, Kuk-Kwon;Ryoo, Chang-Kyung
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.47 no.3
    • /
    • pp.187-194
    • /
    • 2019
  • The off-axis Infra-Red(IR) seeker is mounted on the nose cone side of the anti-air high speed missile to alleviate thermal shield effect due to aerodynamic heating. The seeker output can not be regarded as the Line-of-Sight(LOS) rate any more as missile's roll motion to keep the target tracking is associated. In this paper, we propose a method to calculate the LOS rate for off-axis seeker on a 2-axis gimbal. Firstly, true LOS rate equations are analytically derived but not implementable because boresight error rate is not measurable. And then the first order lag approximation to obtain boresight error rate is proposed. The proposed LOS rate calculation method can compensate the coupling effect by considering the rotations of missile and gimbal. The performance of the proposed method is verified via full nonlinear 6-DOF(Degree of Freedom) simulations.

A Control for 2-axis Gimbaled Millimeter Wave Seeker using Space Vector PWM of PMSM (영구 자석형 동기전동기의 공간전압벡터 PWM 기법을 적용한 밀리미터 웨이브 탐색기 2축 김발 구동 제어)

  • Lee, Sung-Yong;Lee, Jung-Suk
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.60 no.12
    • /
    • pp.2386-2391
    • /
    • 2011
  • Tracking and detecting targets by the millimeter wave seeker is affected by moving of platform. In order to perform the tracking performance, stabilization of a millimeter wave seeker which consists of 2-axis gimbals was considered in this study. The feasibility of the analysis and the 2-axis gimbal servo system modeling design were verified along with some simulation results.

Backlash Estimation of a Seeker Gimbal with Two-Stage Gear Reducers (2 단 기어 감속기를 갖는 탐색기 짐발의 백래시 추정)

  • Baek, Joo-Hyun;Hong, Sung-Min;Kwak, Yoon-Keun;Kim, Soo-Hyun
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.26 no.10
    • /
    • pp.2130-2141
    • /
    • 2002
  • A unique technique to estimate the magnitude or contribution ratio of each stage backlash in a system with a two-stage gear reducer is proposed. The concept to estimate the magnitude or contribution ratio of each stage backlash is based on the change of frequency response characteristic, in particular, the change of anti-resonant frequency and resonant frequency, due to the change of each stage backlash magnitude, even though the total backlash magnitude of a system with a two-stage gear reducer is constant. The validity of the technique is verified in a seeker gimbal and satisfactory results are obtained. It is thought that the diagnosis and maintenance of the manufacturing machines and systems with two-stage gear reducers will become more efficient and economical by virtue of the proposed technique.

Verification of Missile Angular Velocity Calculation Using FMS (FMS를 이용한 대전차 유도탄의 각속도 계산식 검증)

  • Park, Eo-Jin;Kim, Wan-Shik;Park, Chan-Gook
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.37 no.10
    • /
    • pp.992-997
    • /
    • 2009
  • This paper focuses on the calculation of the missile angular velocity under the reduced sensor condition and its verification using the Flight Motion Simulator(FMS). The missile angular velocity is usually measured by the body gyroscopes, but we assume that the inertial sensors on the missile body are in the absence of pitch and yaw gyroscopes. Under this reduced sensor condition, this paper shows the missile angular velocity can be calculated by using the gimbal seeker gyroscope, the roll body gyroscope, the gimbal angle and its rate. The FMS experiment was carried out to verify the proposed algorithm.

Compensation for the Body-Coupling in the 2-Gimballed Seeker Homing Loop on BTT Missile

  • Sangkeun Jeong;Kim, Eulgon;Chanho Song;Hangju Cho
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2001.10a
    • /
    • pp.156.1-156
    • /
    • 2001
  • It is observed that if the 2-gimballed seeker is stabilized using rate gyros mounted along its primary axis, line of sight change measured in the seeker is induced by the rolling due to the bank-to-turn(BTT) steering as well as the actual change. This body-coupling within BTT homing includes the spurious target maneuver effect and the coupling loop due to the rate gyro misalignment. In this paper we formulates the linear BTT homing loop model with a 2-gimballed seeker including those body-coupling effects. With the model, we analyze the effects of the couplings, and show that the roll rate coupling to the rate gyro for the stabilztion of gimbal could seriously deteriorate the homing loop stability. And we propose a direct linear compensator for the coupling to recover the stability.

  • PDF

Shock Analysis of Gimbal Structure System Including Rubber Vibration Isolator in a Observation Reconnaissance Aircraft (방진 고무를 포함한 항공 감시 정찰용 짐발 구조 시스템의 충격 해석)

  • Lee, Sang Eun;Lee, Tae Won;Kang, Yong Goo
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.13 no.2
    • /
    • pp.73-80
    • /
    • 2014
  • A camera module that gathers visual information via aerial observation reconnaissance is equipped inside a gimbal structure. This gimbal structure system must reduce dynamic responses in order to obtain clear images under all circumstances. Among many design specifications for this system, there is MIL-STD-810G as a shock standard. This specification indicates a limitation of the acceleration of the camera module under a base shock excitation on the gimbal structure. The satisfaction of this condition can usually be proved by experiment, because it includes bearings and dynamic isolators made of rubber. Numerical analysis must be proposed for design improvement of the gimbal structure. To achieve this goal, transient response analysis for the base shock excitation was performed using the finite element method. Experimental results were compared with numerical solutions and it is shown that the present method is useful.