• 제목/요약/키워드: Seedling production

검색결과 519건 처리시간 0.023초

땃두릅나무 재분화 유식물체의 순화 체계 및 생육 특성 (Establishment of Acclimatization System and Growth Characteristics for Regenerated Plants of Oplopanax elatus Nakai)

  • 성은수;유지혜;김희영;최혜림;서지원;황명하;김명조;유창연
    • 한국약용작물학회지
    • /
    • 제27권6호
    • /
    • pp.397-403
    • /
    • 2019
  • Background: Oplopanax elatus is widely distributed at high altitudes (about 1,100 m) in China, Russia and Korea. It is hard to propagate, breed, and difficult to grow. Hence, it has been designated as a rare and endangered medicinal plant. A study was conducted to establish a system for large scale seedling production of Oplopanax elatus in vitro and to find the ideal environment for its seedling growth. Methods and Results: In this study, the explants produced under in vitro conditions during our previous study were grouped into three categories (under 10 mm, 10 mm - 30 mm and above 30 mm) based on plant height and were transferred to the growth-chamber and greenhouse for two weeks in each setting for acclimatization. The plantlet category of above 30 mm showed good performance, and was further evaluated under three acclimatization methods as follows: three different growth media (commercial soil, commercial soil + perlite, commercial soil + sand), four shading levels (0%, 50%, 70%, 90%) and four altitude levels (157 m, 218 m, 601 m, 870 m) in Gangwon province of South Korea. As results, O. elatus seedlings showed better growth characteristics at 870 m of altitude, 70% shading level and in the commercial soil compared to other treatments. Conclusions: The regenerated seedlings of Oplopanax elatus obtained through plant tissue culture would be advantageous for use in large scale seedling production systems paired with a good acclimation method. For obtaining optimal results, it is recommended that seedling be acclimatized in a high altitude environment.

Identification of Candidate Transcripts Related to Drought Stress using Secondary Traits and qRT-PCR in Tropical Maize (Zea mays L.)

  • Kim, Hyo Chul;Song, Kitae;Moon, Jun-Cheol;Kim, Jae Yoon;Kim, Kyung-Hee;Lee, Byung-Moo
    • 한국작물학회지
    • /
    • 제64권4호
    • /
    • pp.432-440
    • /
    • 2019
  • Global climate change exerts adverse effects on maize production. Among abiotic stresses, drought stress during the tasseling stage (VT) can increase anthesis-silking intervals (ASI) and decrease yield. We performed an evaluation of ASI and yield using a drought-sensitive line (Ki3) and a drought-tolerant line (Ki11) to analyze the correlation with ASI and yield. Moreover, the de novo data of Ki11 were analyzed to find putative novel transcripts related todrought stress in tropical maize. A total of 182 transcripts, with a log2 ratio >1.5, were found by comparing drought conditions to a control. The top 40 transcripts of high expression levels in the de novo analysis were selected and analyzed with PCR. Of the 40 transcripts, six novel transcripts were detected by quantitative real-time PCR (qRT-PCR) using seedling and VT stage samples. Five transcripts (transcripts_1, 12, 34, 35, and 40) were up-regulated in the Ki11 shoot at seedling stage, and transcripts_1, 12, and 40 were up-regulated at the re-watering stage after 12 h of drought stress. The transcripts_32 and 34 were up-regulated at the VT stage. Hence, transcript_34 possibly plays a significant role in drought tolerance during the seedling and VT stages. The transcript_32 was identified as chloramphenicol acetyltransferase (CAT) by Pfam domain analysis. The function of the other transcripts remained unknown. Further characterization of these novel transcripts in genetic regulation will be of great value for the improvement of maize production.

The effects of additive biomaterials and their mixed-ratios in growing medium on the growth of Quercus serrata container seedlings

  • Seo, Jeong Min;An, Ji Young;Park, Byung Bae;Han, Si Ho;Youn, Woo Bin;Aung, Aung;Dao, Huong Thi Thuy;Cho, Min Seok
    • 농업과학연구
    • /
    • 제46권1호
    • /
    • pp.93-102
    • /
    • 2019
  • The materials of artificial soils in the production process of container seedlings have a great influence on plant growth. Peat moss, vermiculite, and perlite have been used as major components of artificial soils for many years; however, they could decrease carbon fixation carried out by the soil and cause environmental problems such as a change in the water quality. Thus, environmental friendly materials to replace them must be developed. The purpose of this study was to verify the optimum additive materials of artificial soils and their mixed ratios for the growth and seedling quality index (SQI) of Quercus serrata. Rice husk, mushroom sawdust, and pine bark were each used as an additive material and mixed into the growth medium at 10% and 20% of the total volume. There was no significant difference in the height growth of Q. serrata. The 20% mushroom sawdust decreased the root collar diameter by 23.4% compared to the control. The total dry weight was highest with the 10% rice husk and was significantly lower by 10.3% for the 20% mushroom sawdust compared to the control. Additionally, the SQI for all the treatments showed no tendency to increase compared with the control. Thus, this study showed the possibility of recycling biomaterials from agriculture and forest for seedling production. This method could reduce environmental problems and help eco-friendly nurseries to achieve a carbon negative impact by the recycling of by-products.

소식재배용 이앙기 모판 이송간격에 따른 이앙정확도 분석 (Analysis of Transplanting Accuracy of Rice Transplanter for Low density Planting According to Transfer Distance to Seedling Tray)

  • 김원경;이상희;최덕규;박석호;강연구;문석표;천창욱;장성혁
    • 드라이브 ㆍ 컨트롤
    • /
    • 제21권2호
    • /
    • pp.30-35
    • /
    • 2024
  • Domestic rice is more expensive than imported products, so it is necessary to reduce production costs to secure competitiveness. Low-density planting developed in Japan is a cultivation technology that reduces labor and production costs without yield loss. The area of low-density cultivation is continuously increasing. However, research on how rice transplanters adapt to low-density planting has not been conducted. Therefore, this study was carried out to determine the optimal working conditions of a rice transplanter for low-density planting. Three types of rice transplanters were used and treated based on 3 conveying distance levels. The number of picked seedlings, pick missing rate, the number of planted seedlings, and the mis-planted rate were investigated to evaluate planting accuracy according to the transfer distance to the seedling tray. The results showed that the number of planted seedlings was 4.31~4.95 EA with an L1 seedling tray transfer distance (horizontal 9 mm, vertical 8 mm), but the mis-planted rate was higher than in other conditions. At L2 (horizontal 9 mm, vertical 10 mm) and L3 (horizontal 11 mm, vertical 8 mm) transfer distance conditions, the number of planted seedlings were 4.89-5.68 EA and 4.69-5.66 EA, respectively, with a low mis-planted rate of less than 3%. The results showed that if the transfer distance is adjusted properly, a rice transplanter can be used for low-density planting with high planting accuracy.

Effects of Different Root Restriction Media on Root Activity and Seedling Quality and Early Growth Parameters of Runner Plantlets of Strawberry After Transplanting

  • Park, Gab Soon
    • 한국환경과학회지
    • /
    • 제25권3호
    • /
    • pp.337-343
    • /
    • 2016
  • The present study aimed to determine the influence of various root restriction media on seedling quality and early growth of strawberry after transplanting. The root activity of the seedlings, measured 20 days after fixation, was considerably higher (0.096, 0.090, and $0.063mg{\cdot}g^{-1}{\cdot}h^{-1}$ at 420, 450, and 480 nm, respectively) in expanded rice hull (ERH) treatment than in the sandy loam and loamy sand treatments. The volumetric water content (VWC) of the root media tested across 3 irrigation regimes (15 d, 30 d, 45 d) in the nursery field was highest in sandy loam (65.0-66.8%), followed by 59.4-61.3% in loamy sand and 38.6-45.3% in ERH. When growth parameters of runner plantlets were compared, ERH treatment was found to result in the highest crown thickness and fresh weights of root and above-ground parts. This had a favorable influence on above-ground tissue growth after transplanting to plastic house soil. As mentioned above, ERH treatment resulted in the highest seedling quality and early growth after transplanting. The results of this study would serve as useful on-site data for the production of high-quality strawberry seedlings.

Changes in quantity and quality of rice at different sowing date under wet-hill seeding in Jeonbuk plain area

  • Cho, Seung-Hyun;Lee, Deok-Ryeol;Lee, Songyee;Kim, Kab-Cheol;So, Sun-young;Lee, Ki-Kwon
    • 한국작물학회:학술대회논문집
    • /
    • 한국작물학회 2017년도 9th Asian Crop Science Association conference
    • /
    • pp.261-261
    • /
    • 2017
  • This study was carried out to provide basic data for spreading rice direct seeding by inducing stabilization of seedlings, yield and quality according to sowing times in rice direct seeding cultivation. In 2016, 'Sukwang' was seeded 3 times by 10 days interval on May. 10, 20, 30 and 6kg/10ha of seeding rate respectively in Iksan. In summary, the number of rice seedling establishment was higher than the optimum seedling establishment level at all sowing periods and the seeding rate was better as the sowing period was delayed. Weed development by sowing was the highest at early sowing, May 10, and decreased at late sowing. Heading dates were delayed by 3days for sowing on May 10, 7days for sowing on May 20, and 11 days on sowing on May 30. Rice yield increased with the delay sowing time and compared to the transplanting. It was 84% in sowing on May 10, 94% in sowing on May 20, and 99% in sowing on May 30. In addition, head rice ratio and head rice yield increased according to delayed of seedling.

  • PDF

종합공동육묘장의 설비 자동화에 관한 연구 -파종시스템- (Study on Automation of Integrated Seedling Production System - Planting Device-)

  • 최창현;노광모;이규창;김재민
    • Journal of Biosystems Engineering
    • /
    • 제21권2호
    • /
    • pp.123-133
    • /
    • 1996
  • An automatic drum seeder was developed to improve the seeding operation. It consisted of a conveyor to transfer seedling trays, a seed-hopper to supply seeds, a drum to drop seeds on the tray, and an air blower to remove extra seeds. A photo sensor was used to detect the transfer of seedling trays, and its signal was fed into microcomputer which operated a stepping motor driving the drum. The seeds were adhered to the surface of drum by vacuum pressure, and were dropped into tray cells by compressed air. An air connection unit was devised to alternate between vacuum pressure and compressed air. A control program for the system, written in C language, could operate the drum at the given number of revolutions and revolutions per minute. The results showed that the air connection unit could operate well and the seeds were dropped satisfactorily into tray cells. In case of cabbage and perilla seeds, which are regular and spherical shape, the missing rate was low and the single seeding rate was more than 97%. Low missing rate and high multiple seeding rate were observed in lettuce seeds which have narrow ends with tight weight. The missing rate of pepper seed was very high because of heavy weight and irregular shape. To improve the performance of the seeder, adjustment of vacuum pressure based upon shape and weight of the seeds, careful selection of the material of drum, maintenance of consistent air blower pressure, and replacement of stepping motor to DC motor are recommended.

  • PDF