• 제목/요약/키워드: Seed dry weight

검색결과 345건 처리시간 0.023초

콩에서 Source-Sink변경이 건물축적과 단백질함량에 미치는 영향 (Effects of Source-Sink Alteration on Dry Matter Accumulation and Protein Content in Soybean)

  • 성락춘;박지희;박세준;조재영
    • 한국작물학회지
    • /
    • 제40권6호
    • /
    • pp.723-730
    • /
    • 1995
  • 콩의 건물축적과 단백질전류에 대한 Source-Sink변경의 효과를 구명하기 위하여 1992년에 고려대학교 자연자원대학 실험농장에서 황금콩을 공시품종으로 착협시기(R3)에 상위 40%, 하위 60%의 엽과 협을 제거하여 건물중 및 단백질함량의 변화를 조사한 결과는 다음과 같다. 1. 상엽-하협제거처리에서 하위 엽과 경 건물중이 증가하였고, 상위 종실과 협 건물중은 감소하였다. 2. 엽의 단백질함량은 상위 엽보다 하위 엽에서 높았다. 3. 종실의 단백질함량은 상엽-하협제거와 하엽-상협제거처리에서 낮았다. 4. 상엽-하협제거처리에서 엽의 단백질함량은 가장 높았고 종실 단백질함량은 가장 낮았다. 5. 본 실험의 결과에서 콩의 단백질원은 하부에서 상부로 이동하나 생식생장기간중의 장거리 전류를 위한 엽 단백질의 재이동은 약한 것으로 나타났다.

  • PDF

Effects of Rhizobium Inoculant, Compost, and Nitrogen on Nodulation, Growth, and Yield of Pea

  • Solaiman, A.R.M.;Rabbani, M.G.
    • 한국작물학회지
    • /
    • 제51권6호
    • /
    • pp.534-538
    • /
    • 2006
  • The effects of Rhizobium inoculant, compost, and nitrogen on nodulation, growth, dry matter production, yield attributes, and yield of pea (Pisum sativum) var, IPSA Motorshuti-3 were assessed by a field experiment. Among the treatments Rhizobium inoculant alone performed best in recording number and dry weight of nodules/plant. The highest green seed yield of 8.38 ton/ha (36.9% increase over control) and mature seed yield of 2.97 ton/ha (73.7% increase over control) were obtained by the application of 90 kg N/ha. The effects of 60 kg N/ha, Rhizobium inoculant alone and Rhizobium inoculant along with 5 ton compost/ha were same as the effect of 90 kg N/ha in recording plant height, root length, dry weight of shoot, and root both at preflowering and pod filling stages, number of mature pods/plant, number of mature seeds/pod, 1000-seed weight, green, and mature seed yields of pea.

Effects of seed sources and shade on vigor of Brant's oak seedling

  • Taghvaei, Mansour
    • Journal of Ecology and Environment
    • /
    • 제33권4호
    • /
    • pp.299-306
    • /
    • 2010
  • The use of local seed provenance is often recommended in forest restoration. Early vigor is a combination of the performance of seed germination and emergence after planting. The ability of young Brant's oak plants to grow and develop after emergence and its dependence on local habitat conditions was investigated in this study. The effects of seed source and shade on early growing seedlings of Brant's oak (Quercus brantii L.) were determined in field measurements. Seeds of Quercus brantii L. were collected from 4 forest areas (seed sources) in southern Zagros (Provinces of Kohkilouyeh-Bouyer Ahmad and Fars) at altitudes of 850, 1,100, 1,500, 2,100 m a.s.l., and planted in a nursery constructed in southwestern Iran. According to a split-plot design consisting of four blocks, each containing two main treatment plots (no shading, partial shading), each main plot was sub-divided into four sub-plots (for elevations of 850, 1,100, 1,500 and 2,100 m). Results showed that shade treatments had significant effects on emergence percentage and rate, shoot length, shoot dry weight (SDW), root dry weight (RDW), leaf area (LA), and chlorophyll content. Ecological factors also had an effect on seed performance. Altitude of seed source had a very significant effect on root length, LA, SDW, and RDW. The seeds collected from 850 m a.s.l. elevation showed the highest performance, especially in leaf area, root length, shoot dry weight, and root dry weight. Our results showed that the altitude of 850 m a.s.l. was the best for collecting Brant's oak seeds.

Response of Soybean to Elevated $\textrm{CO}_2$ Concentrations and Temperatures at Two Levels of Nitrogen Application

  • Kim, Hong-Rae;Song, Hong-Keun;Lee, Sun-Joo;Kim, Seung-Hyun;Han, Sang-Joon;Ahn, Joung-Kuk;Chung, Ill-Min
    • 한국작물학회지
    • /
    • 제49권2호
    • /
    • pp.73-81
    • /
    • 2004
  • Effects of ambient and elevated $\textrm{CO}_2$ and high temperature, and their interactions with zero and applied nitrogen supply (NN-no nitrogen and AN-applied nitrogen) were studied on soybean (Glycine max L.) in 2001. In this experiment, elevated $\textrm{CO}_2$ (650 $\mu\textrm{mol}.\textrm{mol}^{-1}$) and temperature (+$5^{\circ}$) increased total dry mass at final harvest by 125% and 119% and seed weight per plant by 57% and 105% for NN and AN plants, respectively. Although the influence of temperature and temperature x $\textrm{CO}_2$ were not significant, the influences of $\textrm{CO}_2$ concentration and temperature x $\textrm{CO}_2$ concentration were significant on total dry weight and seed weight, respectively. In particular, seed weight per plant was increased, while weight per one hundred seed weight was decreased with elevated $\textrm{CO}_2$ and temperature. The N supply increased biomass and seed weight per soybean plants. The results of this study suggest that the long-term adaptation of soybean growth at an elevated $\textrm{CO}_2$ concentration and high temperature might potentially result in a increase in dry matter production and yield.

Dry Matter Accumulation, Harvest Index, and Yield of Soybean in Response to Planting Time

  • Chun, Seong-Rak
    • 한국작물학회지
    • /
    • 제47권4호
    • /
    • pp.311-318
    • /
    • 2002
  • Planting date of soybeans [Glycine max (L.) Merr.] is one of production components in cultural systems. The objective of the current study was to identify the components of soybean production and cultural practices encompassing planting dates and cultivars that respond to dry matter accumulation, harvest index and yield components. Three determinate soybean cultivars were planted on May 13 (early), June 3 (mid), and June 24 (late). Planting density was 60$\times$15cm with 2 seeds (222,000 plants per ha). Soybean plants were sampled every 10 days interval from the growth stages of V5 to R8 and separated into leaves including petioles, stems, pods, and seeds. Dry matter accumulations, harvest indices, and yield components were measured. Early planting had taken 55 days from VE to R2 and late planting taken 39 days indicating reduced vegetative growth. Early planting showed higher leaf, stem, pod and seed dry weights than late planting. However, late planting appeared to be higher harvest index and harvesting rate. Vegetative mass including leaf and stem increased to a maximum around R4/R5 and total dry weight increased to a maximum around R5/R6 and then declined slightly at R8. The highest seed yield was obtained with mid planting and no difference was found between early and late plantings. Cultivar differences were found among planting dates on growth characteristics and yield components. The results of this experiment indicated that soybean yield in relation to planting dates examined was mainly associated with harvest index and harvesting rate, and planting date of cultivars would be considered soybean plants to reach the growth stage of R4/R5 after mid August for adequate seed yield.

Effect of seeding depth on seedling growth and dry matter partitioning in American ginseng

  • Proctor, John T.A.;Sullivan, J. Alan
    • Journal of Ginseng Research
    • /
    • 제37권2호
    • /
    • pp.254-260
    • /
    • 2013
  • Greenhouse and field experiments with American ginseng (Panax quinquefolius L.) stratified seed sown at depths of 10 to 100 mm were carried out to determine effects of seeding depth on seedling emergence, growth and development and to calculate optimum seeding depth. The time to 50% seedling emergence ($E_{50}$) in the field increased linearly from 17 d at 20 mm seeding depth to 42.5 d at 80 mm. Seedling emergence and root weight (economic yield) at the end of the first year each increased quadratically with the increase of seeding depth. Maximum emergence and root yields were produced at sowing depths of 26.9 and 30.6 mm respectively. In a greenhouse pot experiment, increasing seeding depth from 10 to 100 mm increased partitioning of dry matter to leaves from 23.6% to 26.1%, to stems from 6.9% to 14.2%, and decreased dry matter to roots from 69.5% to 59.7%. Optimum seeding depth was 31.1 mm for a corresponding maximum root weight of 119.9 mg. A predictor equation [X (seeding depth, mm)=Y (seed weight, mg)/9.1+20.96] for seeding depth for ginseng, based on data for ten vegetable crops, their seed weights and suggested seeding depths, predicted a seeding depth of 28.3 mm for ginseng similar to that reported above for most pot and field experiments.

노지(露地) 및 P. E. film 피복하(被覆下)에서 제초시기(除草時期)와 기간(期間)이 땅콩의 생육(生育) 및 수량(收量)에 미치는 영향(影響) (Growth and Yield of Peanuts Affected by Weeding Time and Periods in Bare Soil and Under the P. E. film Mulch)

  • 강광희;이석순;이계홍;황형백;이상백;예병덕
    • 한국잡초학회지
    • /
    • 제7권1호
    • /
    • pp.52-57
    • /
    • 1987
  • To know the effects of weeding periods (weeding from 12 days, 28 days and 42 days after seeding to harvest, and weeding from seeding to 14 days, 28 days and 42 days after seeding) and growing conditions such as transparent polyethylene film mulch (P.E. mulch) and bare soil on growth and yield of peanuts, "Yeongho-Tangkong" was planted on May 10, 1984. Under P.E. mulch, the number of weeds was higher, but the weed dry weight was lower than in bare soil by the middle of July. Sixty days after seedings, the length of main stems in weedy check plots was longer, but shoot dry weight was lower compared to weed free plot. In the correlation coefficients between weed dry weight and the shoot dry weight of peanut on July 14, the growth retardation of peanuts due to weeds was showed earlier under P.E. mulch than in bare soil. Shoot dry weight, shelling ratio, number of seeds per pod, 100 pod weight, and seed yield were higher under P.E, mulch compared to bare soil. But weed dry weight, length of branches, number of pod bearing branches, number of pods per square meters, and pod yield were similar between P.E. mulch and bare soil. Shoot dry weight of peanuts, length of branches, number of pod bearing branches, number of pods per square meters, pod yield, 100 pod weight, 100 seed weight, and seed yield in weed free plots from 28 days after seeding to harvest (28 DAS-Harvest) were higher compared to weed free plots from 42 DAS-Harvest. However, in the weed free plot from seeding to 42 days after seeding seed yield was lower than that of the continuous weeding plot due to lower number of pod bearing branches and number of pods per square meters. When weed was not controlled at the later growth stages of peanuts, reduction in seed yield due to weeds was greater in bare soil than that under P.E. mulch.

  • PDF

Canada산 인삼의 형태 특성 (Correlations among Morphological Characteristics of Panax quinquefolium Plants Grown .in British Columbia, Canada)

  • Smyth, S.R.;Bailey, W.G.;Skretkowiez, A.L.
    • Journal of Ginseng Research
    • /
    • 제12권2호
    • /
    • pp.145-152
    • /
    • 1988
  • Correlations between various morphological characteristics of Panax quinquefolium plants grown in Lytton, British Columbia, Canada were assessed for 1-through 4-year old plants. Root dry weight, the dependent variable, was found to be strongly related to leaf dry weight, leaf length and root length for 1-and 2-year old plants during the middle of the growing season. For 1- and 2-year old plants at the end of the growing season, root dry weight was found to be related to leaf dry weight, leaf length and stem dry weight. For 3 and 4-year old plants, root dry weight was found to be related to leaf dry weight, leaf length and stem dry weight. For 3- and 4-year old plants, root dry weight was found to be related to leaf dry weight. For practical considerations, this latter relationship provides a simple method for selecting superior plants from which seed can be harvested.

  • PDF

Responses of Soybean Cultivars to Excessive Soil Moisture Imposed at Different Growth Stages

  • Seong, Rak-Chun;Sohn, Joo-Yong;Shim, Sang-In
    • 한국작물학회지
    • /
    • 제45권5호
    • /
    • pp.282-287
    • /
    • 2000
  • Soybean [Glycine max (L.) Merrill] crops, grown in a rice soybean rotation, can suffer when grown in soil with excessive moisture. The objective of this work were to determine the reduction in growth and yield, responses of vegetative and reproductive growth of soybean to excessive soil moisture achieved by prolonged irrigation. Responses of different cultivars were determined at growth stages from V6 to R8 to clarify the sensitive growth stages or characteristics to excessive soil moisture. Cultivar differences in response to excessive soil moisture condition were conspicuous in seed dry weight and harvest index (HI) but not in the response of seed number or pod number per plant. The timing of irrigation causing the condition of excessive soil moisture influenced the vegetative or reproductive traits. Soybean plants were more affected by irrigation commencing at the pre-flowering than at the post-flowering stage. Post-flowering irrigation did not reduce growth of vegetative organs significantly; in fact the growth of stems and leaves was facilitated by the prolonged irrigation commencing at flowering. Differences between cultivar response to prolonged irrigation were assumed to relate to the reduced amount of assimilates translocated to the reproductive organ.

  • PDF

Response of Leaf Water Potential and Growth Characteristics to Irrigation Treatment in Soybean

  • Lee, Jeong-Hwa;Seong, Rak-Chun
    • 한국작물학회지
    • /
    • 제48권2호
    • /
    • pp.81-88
    • /
    • 2003
  • Soybeans [Glycine max (L.) Merr.] are frequently exposed to unfavorable environments during growing seasons and water is the most important factor limiting for the production system. The purpose of this study was to determine the leaf water potential changes by irrigation, and to evaluate the relationships of leaf water potential, growth and yield in soybeans. Three soybean cultivars, Hwangkeumkong, Shinpaldalkong 2, and Pungsannamulkong, were planted in growth chamber and field with irrigated treatments. Leaf water potential of three soybean cultivars was positively correlated with leaf water content during vegetative and reproductive growth stages in growth chamber and field experiments. Leaf water potentials measured for three soybean cultivars under growth chamber were higher than those of under field conditions. Higher leaf water potential with irrigated plots under field was observed compared to conventional plots during reproductive growth stages. Leaf water potentials of three soybean cultivars were continually decreased during reproductive growth stages under field and there was no significant difference among them. Number of leaves, leaf water content, pod dry weight, number of seeds and seed dry weight with irrigated plots were higher than those of conventional plots. The results of this study suggested that leaf water potential could be used as an important growth indicator during the growing season of soybean plants.