• Title/Summary/Keyword: Seed content

Search Result 1,416, Processing Time 0.029 seconds

Quality Characteristics of Sulgidduk Supplemented with Sunflower (Helianthus annuus) Seeds (해바라기씨를 첨가한 설기떡의 품질 특성)

  • Lim, Jeom-Hee;Kang, Yang-Sun;Kim, Jong-Gun
    • Journal of the East Asian Society of Dietary Life
    • /
    • v.18 no.3
    • /
    • pp.337-344
    • /
    • 2008
  • This study was conducted to investigate the quality characteristics of Sulgidduk with different ratios of sunflower seeds (0, 3, 6, 9, 12%), stored over 3days. As amount of sunflower seed content increased, moisture contents decreased $41{\sim}36%$. The L-value decreased with increasing seed content, while a- and b-values increased. Mechanical evaluation revealed that hardness was highest at 0% and lowest at 12% seed content during the storage period. Adhesiveness was highest at 0% seed content, decreasing with increasing seed content on the first day, while cohesiveness did not show significant differences with or without seed content. Springiness increased with increasing seed content, while gumminess and chewiness decreased with increasing seed content. Results of sensory evaluations showed that color and flavor increased with addition of sunflower seed, with softness, moistness, chewiness and overall-acceptability being highest at 6% seed content. In conclusion, results prove that Sulgidduk with 6% of sunflower seed content is the best.

  • PDF

Development and Performance of a Jatropha Seed Shelling Machine Based on Seed Moisture Content

  • Aremu, A.K.;Adeniyi, A.O.;Fadele, O.K.
    • Journal of Biosystems Engineering
    • /
    • v.40 no.2
    • /
    • pp.137-144
    • /
    • 2015
  • Purpose: The high energy requirement of extraction of oil from jatropha seed and reduction of loss in oil content between whole seed and kernel of jatropha necessitate seed shelling. The purpose of this study is to develop and evaluate the performance of a jatropha seed shelling machine based on seed moisture content. Methods: A shelling machine was designed and constructed for jatropha seed. The components are frame, hopper, shelling chamber, concave, and blower with discharge units. The performance evaluation of the machine was carried out by determining parameters such as percentage of whole kernel recovered, percentage of broken kernel recovered, percentage of partially shelled seed, percentage of unshelled seed, machine capacity, machine efficiency, and shelling efficiency. All of the parameters were evaluated at five different moisture levels: 8.00%, 9.37%, 10.77%, 12.21%, and 13.68% w.b.). Results: The shelling efficiency of the machine increased with increase in seed moisture content; the percentage of whole kernel recovered and percentage of partially shelled seed decreased with increase in moisture content; and percentage of broken kernel, machine efficiency, and percentage of unshelled seed followed a sinusoidal trend with moisture content variation. Conclusion: The best operating condition for the shelling machine was at a moisture content of 8.00% w.b., at which the maximum percentage of whole kernel recovered was 23.23% at a shelling efficiency of 73.95%.

Antioxidative Activity of the Durian (Durio zibethinus) Extract (두리안 추출물의 항산화 활성)

  • Ji, Yun Sun;Chang, Jun Pok
    • Korean Journal of Medicinal Crop Science
    • /
    • v.21 no.4
    • /
    • pp.255-261
    • /
    • 2013
  • The purpose of this study was to examined the antioxidant activities by water and 70% ethanol extract from durian (Durio zibethinus.) seed, sarcocarp and peel. Durian extract were studied for reducing sugar content, polyphenol content, superoxide dismutase (SOD) like activity, electron donating ability, nitrite scavenging ability, flavonoid content, hydroxy radical scavenging activity. Reducing sugar content were increased peel > sarcocarp > seed. Total polyphenol, flavonoid content, DPPH radical scavenging ability and SOD like activity were increased seed > peel > sarcocarp. Total polyphenol content was relatively high as $21.90{\pm}0.50mg/g$ in the ethanol extract of the seed. DPPH radical scavenging ability was relatively high as $62.08{\pm}2.63%$ in the water extract of the seed. Nitrite scavenging ability was no significant difference. Hydroxy radical scavenging activity was increased seed > peel > sarcocarp, was relatively high as $58.27{\pm}1.13%$ in the water extract of the seed.

RAPD Loci for Seed Protein and Oil Content in Soybean (Glycine max)

  • / J
    • Korean Journal of Plant Resources
    • /
    • v.10 no.3
    • /
    • pp.247-249
    • /
    • 1997
  • Seed protein and oil content is important trait in the soybean. Both seed protein and oil content in this plant species is inherited quantitatively. A 68-plant $F_2$ segregation population derived from a mating between Mercury and PI 467.468 was evaluated with random amplified polymorphic DNA (RAPD) markers to identify QTL related to seed protein and oil content. Marker OPB12 was found to be associated with differences in seed protein content. Four markers, OPA09b, OPM07b, OPC14, and OPN11b had highly significant effects on seed oil content. By interval mapping, the interval between marker OPK3c and OPQ1b on linkage group 13 contained a QTL that explained 25.7% variation for seed oil content.

  • PDF

Varietal Difference of Lignan Contents and Fatty Acids Composition in Korean Sesame Cultivars (국내 참깨 품종의 리그난 함량 및 지방산 조성)

  • 강명화;오명규;방진기;김동휘;강철환;이봉호
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.45 no.3
    • /
    • pp.203-206
    • /
    • 2000
  • Although lignans of sesame seed, sesamolin and sesamin have been known as possessing an antioxidant activity, it is less known about their contents of the sesame cultivated in Korea. Collections of sesame cultivated in Korea were used for studies on their lignans content of the seed and fatty acids composition of the oil. The sesamin content of sesame seed with white-coat were 370.29 mg/100g seed, while that of sesame seed with black-coat were 246.58mg/100g seed. Also, the sesamolin contents of sesame seed were 202.22 mg/100g seed in white-coat cultivars and 132.68 mg/100g seed in black-coat sesames. Hence, the lignan content of white-coat sesame cultivars was significantly hi임or than that of black-coat ones. Korean sesame cultivars also showed considerably higher sesamin content than sesamolin content in seeds. The correlation between sesamin and sesamolin contents was not recognized in Korean sesame cultivars. The stearic acid of white-coat sesame was significantly higher than that of black-coat one (p<0.05).

  • PDF

Mineral and Saponin Component in white Sesame, black Sesame and Perilla Seed (흰깨, 검은깨, 들깨 중의 무기질 및 Saponin 함량)

  • 김혜자
    • Journal of the Korean Home Economics Association
    • /
    • v.24 no.3
    • /
    • pp.79-84
    • /
    • 1986
  • the purpose of this paper is to study on the proximate composition, mineral and saponin content in white sesame, black sesame, and perilla seed. For this purpose, we have compared six different materials: white-raw-sesame, white-roast-sesame, black-raw-sesame, black-roast-sesame, raw-perilla seed and roast perilla seed, and have come to the following results. The crude fat content was the highest in white-raw-sesame(55.3%). In all the six samples, the crude fat content in raw seeds was all higher than that in roast seeds. The crude protein content was the highest in the roast perilla seed(24.6%), and in the six samples, the crude protein content in roast seeds all higher than that in roast seeds. The total sugar content was found to be the highest in the roast perilla seed(8.29%). The reducing sugar content was higher in raw perilla seed(1.57%) than in other sample materials. The ash content was the highest in black raw-sesame(5.93%), and that percentage rates was the same as that of FAO and of Japan. Minerals like Cd. Mn. Cu. Na. Mg. Pb. and Ca. were found to be contained more in black sesame than in other sample materials. The minerals contained most in white sesame were Zn.(61.6ppm) and Fe(49.4ppm), and K was contained a little more in perilla seed than in the others. The sample materials which contain saponin most were white-roast-sesame(0.34%) and black-roast-sesame(029%).

  • PDF

Influence of Moisture Content and Seed Dimensions on Mechanical Oil Expression from African Oil Bean (Pentaclethra macrophylla Benth) Seed

  • Aremu, Ademola K.;Ogunlade, Clement A.
    • Journal of Biosystems Engineering
    • /
    • v.41 no.3
    • /
    • pp.193-200
    • /
    • 2016
  • Purpose: New low-cost oilseeds are needed to meet an ever-increasing demand for oil for food, pharmaceutical, and industrial applications. African oil bean seed is a tropical crop that is underutilized and has high oil yields, but there have been no studies conducted on its mechanical oil expression up to now. The objective of this work was to investigate the effect of moisture content and seed dimensions on mechanical oil expression from the seeds. Methods: Fresh oil bean seeds were procured, de-hulled, and cleaned. Initial seed moisture content, obtained in accordance with the ASAE standard, was 12% dry basis (db). The seeds were further conditioned by dehydration and rehydration prior to oil expression to obtain four other moisture levels of 8, 10, 14, and 16% db. The major diameter of the seeds was measured using digital vernier calipers, and the seeds were classified into size dimensions (< 40, 41-45, 46-50, 51-55, and > 55 mm). The oil yield and expression efficiency were obtained in accordance with standard evaluation methods. Results: The highest oil yield and expression efficiency (47.74% and 78.96%, respectively) were obtained for a moisture content of 8% db and seed dimensions of < 40 mm, while the lowest oil yield and expression efficiency (41.35% and 68.28%, respectively) were obtained for a moisture content of 14% db and seed dimensions between 51-55 mm. A mathematical model was developed to predict oil yield for known moisture content and seed dimensions, with a coefficient of determination $R^2$ of 95% and the confidence level of the predictive model of 84.17%. The probability of prediction F ratio showed that moisture content influence was more significant than seed dimensions. Conclusions: The higher the moisture content and larger the seed dimensions, the lower the oil yield from African oil bean seeds.

Isoflavone Composition within Each Structural Part of Soybean Seeds and Sprouts

  • Phommalth, Siviengkhek;Jeong, Yeon-Shin;Kim, Yong-Hoon;Hwang, Young-Hyun
    • Journal of Crop Science and Biotechnology
    • /
    • v.11 no.1
    • /
    • pp.57-62
    • /
    • 2008
  • Isoflavone content in various parts of six soybean cultivars and soybean sprout during germination was analyzed by high performance liquid chromatography. The parts analyzed were seed coat, cotyledon, and axis for seeds and whole sprout, root, hypocotyl, and cotyledon for sprout. Two cultivars, Aga3 which is known to have the smallest seed size and the highest isoflavone content among the Korean soybean cultivars and Pungsannamulkong which is the most widely being used as soy-sprout, were selected for sampling from 1 to 10 days after germination. At the same weight, the order of isoflavone content increased from seed coat to cotyledon to axis. The highest total isoflavone(isoflavone$\times$dry weight) content was observed in the cotyledon and the lowest in the seed coat. The cotyledon of the Aga3 variety had the highest total isoflavone content and the lowest was measured in the Pungsannamulkong variety. The highest total isoflavone content, $10,788{\mu}g/g$, was observed in whole sprouts(cotyledon+hypocotyl+root) on day 7 for Aga3. After day 7, there was a decreasing trend in isoflavone content as the germination period increased. Total isoflavone content in the cotyledon of Aga3 significantly increased after seed germination, whereas the isoflavone content in the cotyledon of Pungsannamulkong decreased. However, total isoflavone content in the root of both varieties increased while isoflavone content in the hypocotyls decreased after seed germination.

  • PDF

Identification of the quantitative trait loci (QTL) for seed protein and oil content in soybean.

  • Jeong, Namhee;Park, Soo-Kwon;Ok, Hyun-Choong;Kim, Dool-Yi;Kim, Jae-Hyun;Choi, Man-Soo
    • Proceedings of the Korean Society of Crop Science Conference
    • /
    • 2017.06a
    • /
    • pp.148-148
    • /
    • 2017
  • Soybean is an important economical resource of protein and oil for human and animals. The genetic basis of seed protein and oil content has been separately characterized in soybean. However, the genetic relationship between seed protein and oil content remains to be elucidated. In this study, we used a combined analysis of phenotypic correlation and linkage mapping to dissect the relationship between seed protein and oil content. A $F_{10:11}$ RIL population containing 222 lines, derived from the cross between two Korean soybean cultivars Seadanbaek as female and Neulchan as male parent, were used in this experiment. Soybean seed analyzed were harvested in three different experimental environments. A genetic linkage map was constructed with 180K SoyaSNP Chip and QTLs of both traits were analyzed using the software QTL IciMapping. QTL analyses for seed protein and oil content were conducted by composite interval mapping across a genome wide genetic map. This study detected four major QTL for oil content located in chromosome 10, 13, 15 and 16 that explained 13.2-19.8% of the phenotypic variation. In addition, 3 major QTL for protein content were detected in chromosome 10, 11 and 16 that explained 40.8~53.2% of the phenotypic variation. A major QTLs was found to be associated with both seed protein and oil content. A major QTL were mapped to soybean chromosomes 16, which were designated qHPO16. These loci have not been previously reported. Our results reveal a signi cant genetic relationship between seed protein and oil fi content traits. The markers linked closely to these major QTLs may be used for selection of soybean varieties with improved seed protein and oil content.

  • PDF

Changes of Chemical Components During Seed Development in Black Soybean (Glycine max L.)

  • Shim Sang In;Kang Byeung Hoa
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.49 no.4
    • /
    • pp.331-336
    • /
    • 2004
  • Changes in the level of metabolites in leaves and pods were examined with respect to the seed chemical composition in black soybean. There was no further increase in pod length after 42 days after flowering (DAF). Pod weight, however, persistently increase until 73 DAF, thereafter the weight was slightly lowered. The seed storage protein, however, increased drastically as the increasing rate of pod weight was lessened at 61 DAF. The accumulation of seed storage proteins was occurred conspicuously as the increasing rate of pod weight was slowed down. The chlorophyll content both in leaves and pods was drastically decreased after 50 DAF. The beginning of drastic reduction in chlorophyll content was occurred concomitantly with the reduction of soluble protein content in leaves. The sugar content in leaves showed similar tendency with chlorophyll and soluble protein content. The starch level in leaves, however, showed different changing pattern during seed development. The starch content in leaves was increased persistently until 66 DAF, thereafter the content was decreased drastically to about $55\%$ of maximal value at 66 DAF. Total phenolics content in leaves and the anthocyanins content in seeds were stable without noticeable increase until 66 DAF. The contents were increased dramatically after 66 DAF showing the synchronized pattern with the decrease in starch level in leaves. The levels of the selected metabolites in leaf and seed suggested that the accumulation of chemical components of black soybean seed is launched actively at 66 DAF. The profile of storage proteins was nearly completed at 61 DAF because there was no large difference in densitometric intensity among protein subunits after 61 DAF. In soybean, chemical maturation of seed begins around 61 to 66 DAF at which most metabolites in vegetative parts are decreased and remobilized into maturing seeds.