• Title/Summary/Keyword: Seed adhesion

Search Result 43, Processing Time 0.016 seconds

Grain Shattering Resistance and Its Screening Method of Sesame (참깨 내탈립성의 원인과 검정 방법)

  • Kim Dong-Hwi;Kang Chul-Whan;Park Chang-Hwan;Chae Young-Am;Seong Nak-Sul
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.49 no.6
    • /
    • pp.491-495
    • /
    • 2004
  • The existing shattering-resistant sesames had low adaptability and yield potential in Korean environment. Great improvements have been made in these shattering-resistant sesames. We take an optimistic view of success for development of shattering-resistant sesames with high yield potential and superior agronomic characters. This study was carried out to investigate cause of shattering resistance and testing method of effective shattering habit. Shattering-resistant sesames had some specific tissue structures. Shattering resistance of placenta adhesion (PA) sesames was caused by strong seed holding of placenta in capsule, and that of seamless (SL) sesames was caused by nonexistence of seam in capsule. Shattering resistance of indehiscent(ID) sesames resulted because they had thicker mesocarp barrier at the zone of dehiscence compared with that of normal varieties. SL, ID and PA sesames had some variation plants who had high shattering rate. This was judged that evolution direction of these sesames means direction that shattering habit increase. Effective drying method in order to measure shattering resistance was drying condition over 20 days in natural temperature $(20^{\circ}C)$ and 10 days in drying oven $(40^{\circ}C)$.

Genetic Analysis of Shattering Habit and Some Quantitative Characters in Sesame (참깨의 탈립성 및 앙적형질에 대한 유전분석)

  • Kim, Dong-Hwi;Kang, Chul-Whan;Shim, Kang-Bo;Park, Chang-Hwan;Lee, Sung-Woo
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.52 no.2
    • /
    • pp.198-203
    • /
    • 2007
  • This study was carried out to obtain basic informations for gene action of quantitative characters including shattering resistance. The parental varieties used for $5{\times}5$ half diallel crosses were 'Yangbaek' and 'Ansan' of normal type, 'Suwon177' and 'Suwon195' of placenta adhesion type (PA) and 'SIG960320-5-1-1' of indehiscent type (ID). PA and ID type are shattering-resistant sesames, and Yangbaek and Ansan are shattering sesames. All the characters were sufficient to the assumption for diallel analysis in this experiment. Over dominance was exhibited by the number of capsules per plant, while partial dominance by plant height, capsule setting stem length, grain yield per plant and shattering rate, complete dominance by the number of branches per plant. Additive effect was higher than dominance in shattering rate. High shattering rate was dominant over low shattering rate. Suwon 195, shattering resistant sesame, showed to have the many recessive genes which reduced the shattering rate of sesame seed. Broad sense heritability for all the characters was more than 0.8. Narrow sense heritability for the number of branches per plant, the number of capsules per plant, grain yield per plant and shattering rate was 0.45 to 0.63, and plant height and capsule setting stem length was more than 0.8.

Via-size Dependance of Solder Bump Formation (비아 크기가 솔더범프 형성에 미치는 영향)

  • 김성진;주철원;박성수;백규하;이상균;송민규
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.8 no.1
    • /
    • pp.33-38
    • /
    • 2001
  • We investigate the via-size dependance of as-electroplated- and reflow-bump shapes for realizing both high-density and high-aspect ratio of solder bump. The solder bump is fabricated by subsequent processes as follows. After sputtering a TiW/Al electrode on a 5-inch Si-wafer, a thick photoresist for via formation it obtained by multiple-codling method and then vias with various diameters are defined by a conventional photolithography technique using a contact alinger with an I-line source. After via formation the under ball metallurgy (UBM) structure with Ti-adhesion and Cu-seed layers is sputtered on a sample. Cu-layer and Sn/pb-layer with a competition ratio of 6 to 4 are electroplated by a selective electroplating method. The reflow-bump diameters at bottom are unchanged, compared with as-electroplated diameters. As-electroplated- and reflow-bump shapes, however, depend significantly on the via size. The heights of as-electroplated and reflow bumps increase with the larger cia, while the aspect ratio of bump decreases. The nearest bumps may be touched by decreasing the bump pitch in order to obtain high-density bump. The touching between the nearest bumps occurs during the overplating procedure rather than the reflowing procedure because the mushroom diameter formed by overplating is larger than the reflow-bump diameter. The arrangement as zig-zag rows can be effective for realizing the flip-chip-interconnect bump with both high-density and high-aspect ratio.

  • PDF