• Title/Summary/Keyword: Seed Vector

Search Result 67, Processing Time 0.024 seconds

Efficient Transformation Method of Soybean Using Meristematic Tissues of Germinating Seeds (발아종자의 분열조직을 이용한 효율적인 콩 형질전환 방법)

  • Kim, Yul-Ho;Park, Hyang-Mi;Choi, Man-Soo;Sohn, Soo-In;Shin, Dong-Bum;Lee, Jang-Yong
    • Korean Journal of Breeding Science
    • /
    • v.40 no.3
    • /
    • pp.278-285
    • /
    • 2008
  • An efficient transformation method for soybean [Glycine max (L.) Merr.] using meristematic tissues of germinating seeds has been established. The embryonic axes were excised from germinating seeds of Korean soybean cultivar, Iksannamulkong and 0.5-2 cm long segment containing meristematic tissues were prepared by cutting hypocotyl region. The explants were inoculated with Agrobacterium tumefaciens strain LBA4404 harboring a binary vector with the bar gene as a selectable marker gene and a ${\beta}-glucuronidase$ (GUSINT) reporter gene, and then co-cultured for 7 days on co-cultivation medium (CCM). The meristematic tissues were cultured on shoot induction medium (SIMP6) supplemented with 0.4 mg/l $N_6-benzylaminopurine$ (BAP) and 0.1 mg/l indolebutyric acid (IBA) in the presence of 6 mg/l L-phosphinotricin (PPT) for 2 weeks and the surviving explants were transferred to shoot elongation medium (SEMP6). Transformation was confirmed by Southern blot analysis and the transformation efficiencies ranged from 1.48 to 2.07%. The new modified transformation method was successfully implemented for obtaining several transgenic lines with SMV-CP gene. It is expected that this method could efficiently be used for the transformation of recalcitrant soybean cultivars.

Aphid Over-wintering Host Plants and Seasonal Transmission Rates of Potato Leafroll Virus by Aphids in the Highland Fields of Korea (고랭지 감자밭의 진딧물 월동기주 및 감자잎말림바이러스(PLRV) 보독진딧물의 시기별 변동)

  • Kwon, Min;Kim, Juil;Kim, Changseok;Lee, Yeonggyu
    • Korean journal of applied entomology
    • /
    • v.57 no.4
    • /
    • pp.415-423
    • /
    • 2018
  • Aphid is a typical vector that transfers various kinds of viruses to potatoes. Therefore, it is very important to control aphids moving into potato fields. We investigated the seasonal movement pattern of aphids and its virus transmission rates mainly in the three seed potato production regions at highland in Gangwon-do, Korea. In addition, we identified the aphid species with over-wintering eggs collected from barks or twigs of total 57 tree species around potato fields in winter season. The peak time of summer and winter migration of aphid was at the mid-June and the early October, respectively. A 2.8% of total aphid trapped in yellow water-pan trap was turned out PLRV-borne, and the virus transmission rate was 15.4% by Myzus persicae and 9.1% by Macrosiphum euphorbiae. PLRV-borne aphids started to flow in from the late May, and virus transmission rate of aphid trapped in mid-June was the highest with 10.4%. Totally 14 species of aphid eggs wintered in the 17 species of trees including Acer pictum subsp. mono and Acer pseudosieboldianum at the 11 sites. In particular, because it is not certain that Betula platyphylla var. japonica and Yamatocallis hirayamae do transmit potato virus, but they over-wintered in host plants distributed over a wide area, further research on transmission ability is necessary.

Etiological Properties and Coat Protein Gen Analysis of Potato Virus Y Occuring in Potatoes of Korea (우리나라 감자에 발생하는 PVY의 병원학적 특성 및 외피단백질 유전자 분석)

  • ;Richard M. Bostock
    • Proceedings of the Korean Society of Plant Pathology Conference
    • /
    • 1995.06b
    • /
    • pp.77-96
    • /
    • 1995
  • To obtain basic informations for the improvement of seed potato production in Korea, some etiological properties of potato virus Y(PVY) distributed in the major seed potato production area(Daekwanryeong) were characterized, and the nucleotide and amino acid sequences of the coat protein gene of the PVY strains isolated were analyzed. PVY strains in Daekwonryeong, an alpine area, were identified to be two strains, PVYo and PVYN by symptoms of indicator plants, and their distribution in potato fields was similar. Major symptom on potato varieties by PVY was grouped as either mosaic alone or mosaic accompanied with veinal necrosis in the lower leaves. The symptom occurrence of the two symptoms was similar with Irish Cobbler, but Superior showed a higher rate of mosaic symptom than the other. The PVY strain which was isolated from potato cv. Superior showing typical mosaic symptoms produced symptoms of PVY-O on the indicator plants of Chenopodium amaranticolor, Nicotiana tabacum cv. Xanthi nc and Physalis floridana, but no symptom o Capsicum annum cv. Ace. Moreover, results from the enzyme-linked immunosorbent assay with monoclonal and polyclonal antibodies showed that the isolated PVY reacts strongly with PYV-O antibodies but does not react specifically with PVY-T antibodies. The purified virus particles were flexious with a size of 730$\times$11nm. On the basis of the above characteristics, the strain was identified to be a PVY-O and named as of PVY-K strain. The flight of vector aphids was observed in late May, however, the first occurrence of infected plants was in mid June with the bait plants surrounded with PVY-infected potato plants and early July with the bait plants surrounded with PVY-free potato plants. PVY infection rates by counting symptoms on bait plants (White Burley) were 1.1% with the field surrounded with PVY-free potato plants and 13.7% the fields surrounded with PVY-infected potato plants, showing the effect of infection pressure. The propagated PVY-K strain on tobacco(N. sylvestris) was purified, and the RNA of the virus was extracted by the method of phenol extraction. The size of PVY-K RNA was measured to be 9, 500 nucleotides on agarose gel electrophoresis. The double-stranded cDNAs of PVY-K coat protein(CP) gene derived by the method of polymerase chain reaction were transformed into the competent cells of E. coli JM 109, and 2 clones(pYK6 and pYK17) among 11 clones were confirmed to contain the full-length cDNA. Purified plasmids from pYK17 were cut with Sph I and Xba I were deleted with exonuclease III and were used for sequencing analysis. The PVY-K CP gene was comprised of 801 nucleotides when counted from the clevage site of CAG(Gln)-GCA(Ala) to the stop codon of TGA and encoded 267 amino acids. The molecular weight of the encoded polypeptides was calculated to be 34, 630 daltons. The base composition of the CP gene was 33.3% of adenine, 25.2% of guanine, 20.1% of cytosine and 21.4% of uracil. The polypeptide encoded by PVY-K CP gene was comprised of 22 alanines, 20 threonines, 19 glutamic acids and 18 glycines in order. The homology of nucleotide sequence of PVY-K CP gene with those of PVY-O(Japan), PVY-T(Japan), PVY-TH(Japan), PVYN(the Netherlands), and PVYN(France) was represented as 97.3%, 88.9%, 89.3%, 89.6% and 98.5%, respectively. The amino acid sequence homology of the polypeptide encoded by PVY-K CP gene with those encoded by viruses was represented as 97.4%, 92.5%, 92.9%, 92.9%, and 98.5%, respectively.

  • PDF

Screening of salt-tolerance plants using transgenic Arabidopsis that express a salt cress cDNA library (Salt cress 유전자의 형질전환을 통한 내염성 식물체 선별)

  • Baek, Dongwon;Choi, Wonkyun;Kang, Songhwa;Shin, Gilok;Park, Su Jung;Kim, Chanmin;Park, Hyeong Cheol;Yun, Dae-Jin
    • Journal of Plant Biotechnology
    • /
    • v.41 no.2
    • /
    • pp.81-88
    • /
    • 2014
  • Salt cress (Thellungiella halophila or Thellungiella parvula), species closely related to Arabidopsis thaliana, represents an extremophile adapted to harsh saline environments. To isolate salt-tolerance genes from this species, we constructed a cDNA library from roots and leaves of salt cress plants treated with 200 mM NaCl. This cDNA library was subsequently shuttled into the destination binary vector [driven by the cauliflower mosaic virus (CaMV) 35S promoter] designed for plant transformation and expression via recombination- assisted cloning. In total, 305,400 pools of transgenic BASTA-resistant lines were generated in Arabidopsis using either T. halophila or T. parvula cDNA libraries. These were used for functional screening of genes involved in salt tolerance. Among these pools, 168,500 pools were used for primary screening to date from which 7,157 lines showed apparent salt tolerant-phenotypes in the initial screen. A secondary screen has now identified 165 salt tolerant transgenic lines using 1,551 (10.6%) lines that emerged in the first screen. The prevalent phenotype in these lines includes accelerated seed germination often accompanied by faster root growth compared to WT Arabidopsis under salt stress condition. In addition, other lines showed non-typical development of stems and flowers compared to WT Arabidopsis. Based on the close relationship of the tolerant species to the target species we suggest this approach as an appropriate method for the large-scale identification of salt tolerance genes from salt cress.

Fusaric Acid Production in Fusarium oxysporum Transformants Generated by Restriction Enzyme-Mediated Integration Procedure (Restriction Enzyme-Mediated Integration 방법으로 확보한 Fusarium oxysporum 형질전환체의 후자리산 생성능 분석)

  • Lee, Theresa;Shin, Jean Young;Son, Seung Wan;Lee, Soohyung;Ryu, Jae-Gee
    • Research in Plant Disease
    • /
    • v.19 no.4
    • /
    • pp.254-258
    • /
    • 2013
  • Fusaric acid (FA) is a mycotoxin produced by Fusarium species. Its toxicity is relatively low but often associated with other mycotoxins, thus enhancing total toxicity. To date, biosynthetic genes or enzymes for FA have not been identified in F. oxysporum. In order to explore the genetic element(s) for FA biosynthesis, restriction enzyme mediated integration (REMI) procedure as an insertional mutagenesis was employed using FA producing-F. oxysporum strains. Genetic transformation of two F. oxysporum strains by REMI yielded more than 7,100 transformants with efficiency of average 3.2 transformants/${\mu}g$ DNA. To develop a screening system using phytotoxicity of FA, eleven various grains and vegetable seeds were tested for germination in cultures containing FA: Kimchi cabbage seed was selected as the most sensitive host. Screening for FA non-producer of F. oxysporum was done by growing each fungal REMI transformant in Czapek-Dox broth for 3 weeks at $25^{\circ}C$ then observing if the Kimchi cabbage seeds germinated in the culture filtrate. Of more than 5,000 REMI transformants screened, fifty-three made the seeds germinated, indicating that they produced little or fewer FA. Among them, twenty-six were analyzed for FA production by HPLC and two turned out to produce less than 1% of FA produced by a wild type strain. Sequencing of genomic DNA regions (252 bp) flanking the vector insertion site revealed an uncharacterized genomic region homologous (93%) to the F. fujikuroi genome. Further study is necessary to determine if the vector insertion sites in FA-deficient mutants are associated with FA production.

Isolation of Myrosinase and Glutathione S-transferase Genes and Transformation of These Genes to Develop Phenylethylisothiocyanate Enriching Chinese Cabbage (배추에서 항암물질 phenylethylisothiocyanate의 다량 합성을 위한 myrosinase와 glutathione S-transferase 유전자 분리 및 이를 이용한 형질전환체 육성)

  • Park, Ji-Hyun;Lee, Su-Jin;Kim, Bo-Ryung;Woo, Eun-Teak;Lee, Ji-Sun;Han, Eun-Hyang;Lee, Youn-Hyung;Park, Young-Doo
    • Horticultural Science & Technology
    • /
    • v.29 no.6
    • /
    • pp.623-632
    • /
    • 2011
  • To increase the anti-carcinogens phenylethylisothiocyanate (PEITC), myrosinase (MYR), and glutathione S-transferase (GST), genes related to PEITC pathway were isolated and the gene expressions were regulated by Agrobacterium transformation. Isolated cDNAs, MYR, and GST genes were 1,647 bp and 624 bp, respectively, and the protein expression was confirmed through pET system. Thereafter, we constructed a sense-oriented over-expressing myrosinase (pBMY) and RNAi down-regulated GST (pJJGST) binary vectors for the Chinese cabbage transformation. After the transformation, thirteen over-expressing transgenic Chinese cabbage plants (IMS) with pBMY and five down-regulated ones (IGA) with pJJGST were selected by PCR analysis. Selected $T_0$ transgenic plants were generated to $T_1$ plants by self-pollination. Based on the Southern blot analysis on these $T_1$ transgenic plants, 1-4 copies of T-DNA were transferred to Chinese cabbage genome. Thereafter, RNA expression level of myrosinase gene or GST gene was analyzed through real-time RT PCR of IMS, IGA, and non-transgenic inbred lines. In case of IMS lines, myrosinase gene was increased 1.03-4.25 fold and, in IGA lines, GST gene was decreased by 26.42-42.22 fold compared to non-transgenic ones, respectively. Analysis of PEITC concentrations using GC-MS it showed that some IMS lines and some IGA lines increased concentrations of PEITC up to 4.86 fold and up to 3.89 fold respectively compared to wild type. Finally in this study IMS 1, 3, 5, 12, and 15 and IGA 1, 2, and 4 were selected as developed transgenic lines with increasing quantities of anti-carcinogen PEITC.

Development of Marker-free Transgenic Rice for Increasing Bread-making Quality using Wheat High Molecular Weight Glutenin Subunits (HMW-GS) Gene (밀 고분자 글루테닌 유전자를 이용하여 빵 가공적성 증진을 위한 마커 프리 형질전환 벼의 개발)

  • Park, Soo-Kwon;Shin, DongJin;Hwang, Woon-Ha;Oh, Se-Yun;Cho, Jun-Hyun;Han, Sang-Ik;Nam, Min-Hee;Park, Dong-Soo
    • Journal of Life Science
    • /
    • v.23 no.11
    • /
    • pp.1317-1324
    • /
    • 2013
  • High-molecular weight glutenin subunits (HMW-GS) have been shown to play a crucial role in determining the processing properties of the wheat grain. We have produced marker-free transgenic rice plants containing a wheat Glu-1Bx7 gene encoding the HMG-GS from the Korean wheat cultivar 'Jokyeong' using the Agrobacterium-mediated co-transformation method. The Glu-1Bx7-own promoter was inserted into a binary vector for seed-specific expression of the Glu-1Bx7 gene. Two expression cassettes comprised of separate DNA fragments containing only Glu-1Bx7 and hygromycin phosphotransferase II (HPTII) resistance genes were introduced separately to the Agrobacterium tumefaciens EHA105 strain for co-infection. Each EHA105 strain harboring Glu-1Bx7 or HPTII was infected to rice calli at a 3:1 ratio of Glu-1Bx7 and HPTII, respectively. Then, among 216 hygromycin-resistant $T_0$ plants, we obtained 24 transgenic lines with both Glu-1Bx7 and HPTII genes inserted into the rice genome. We reconfirmed integration of the Glu-1Bx7 gene into the rice genome by Southern blot analysis. Transcripts and proteins of the wheat Glu-1Bx7 were stably expressed in the rice $T_1$ seeds. Finally, the marker-free plants harboring only the Glu-1Bx7 gene were successfully screened at the $T_1$ generation.