• Title/Summary/Keyword: Sedimentation Bed

Search Result 79, Processing Time 0.028 seconds

Numerical and Experimental Studies for the Design of High Efficiency Sedimentation Bed (고효율 침전조 설계를 위한 실험 및 수치해석)

  • Kim, Hong-Min;Choi, Sang-Cheol;Kim, Kwang-Yong;Kim, Byung-Hee;Lim, Young-Taek
    • 유체기계공업학회:학술대회논문집
    • /
    • 2002.12a
    • /
    • pp.425-432
    • /
    • 2002
  • Both numerical and experimental studies on sedimentation efficiency of a sedimentation bed were carried out. Three different structures of sedimentation bed and five different combinations of blockage ratio of center feed wall and angle of distributor are implemented to find the optimal values of geometric parameters. The effect of rotation of the distributor on sedimentation efficiency is also investigated. It reveals that the effect of blockage ratio and angle of distributor on sedimentation efficiency is considerable, while rotation effect can be neglected, and that calculated efficiencies show good agreements with those of experiment, qualitatively.

  • PDF

Numerical and Experimental Studies for the Design of High Efficiency Sedimentation Bed (고효율 침전조 설계를 위한 실험 및 수치해석)

  • Kim, Hong-Min;Choi, Sang-Cheol;Kim, Kwang-Yong;Kim, Byung-Hee;Lim, Young-Taek
    • The KSFM Journal of Fluid Machinery
    • /
    • v.6 no.2 s.19
    • /
    • pp.54-61
    • /
    • 2003
  • Both numerical and experimental studies on the sedimentation efficiency of a sedimentation bed were carried out. Three different structures of sedimentation bed and five different combinations of blockage ratio of center feed wall and angle of distributor are implemented to find the optimal values of geometric parameters. The effect of rotation of the distributor on sedimentation efficiency is also investigated. It reveals that the effects of blockage ratio and angle of distributor on sedimentation efficiency are considerable, while rotation effect can be neglected, and that calculated efficiencies show good agreements with those of experiment, qualitatively.

Shape Design and Prediction of Efficiency of Sedimentation Bed using Three-Dimensional Flow Analysis (삼차원 유동해석을 통한 침전조의 침전효율 예측 및 형상설계)

  • Cui Xiang-Zhe;Kim Hong-Min;Kim Kwang-Yong
    • Proceedings of the KSME Conference
    • /
    • 2002.08a
    • /
    • pp.95-98
    • /
    • 2002
  • Three-dimensional flow analyses for two different ratios of radius to height of sedimentation bed are implemented to evaluate the effect of blockage ratio of center feed wall and angle of distributor on sedimentation efficiency, and to find the optimal value of those parameters. Sedimentation efficiencies for three different shapes are compared with and without rotation speed. And then, five different combinations of blockage ratio of center feed wall and angle of distributor are compared It reveals that the effect of blockage ratio of center fled wall and angle of distributor is considerable to sedimentation efficiency while rotation effect can be neglected and $0.55 and 33^{\circ}$for blockage ratio of center food wall and angle of distributor, respectively, ive the best sedimentation efficiency.

  • PDF

A Case Study of Sediment Transport on the Seabed due to Wave and Current Velocities

  • Choi, Byoung-Yeol;Lee, Sang-Gil;Kim, Jin-Kwang;Oh, Jin-Soo
    • Journal of Advanced Research in Ocean Engineering
    • /
    • v.2 no.3
    • /
    • pp.99-111
    • /
    • 2016
  • Seabed affected by scouring, sedimentation, and siltation occurrences often cause exposure, which induces risks to existing structures or crude oil or gas pipeline buried subsea. In order to prevent possible risks, more economical structure installation methodology is proposed in this study by predicting and managing the risk. Also, the seabed does not only consist of sandy material, but clayey soil is also widespread, and the effect of undrained shear strength should be considered, and by cyclic environmental load, pore water pressure will occur in the seabed, which reduces shear strength and allows particles to move easily. Based on previous research regarding sedimentation or erosion, the average value of external environmental loads should be applied; for scouring, a 100-year period of environmental conditions should be applied. Also, sedimentation and erosion are mainly categorized by the bed load and suspended load; also, they are calculated as the sum of bed load and suspended load, which can be obtained from the movement of particles caused by sedimentation or erosion.

A study on Nickel Hydroxide Crystallization for Plating waste Treatment

  • Lee, Chang-Hwan;Lee, Choul-Ho
    • Proceedings of the IEEK Conference
    • /
    • 2001.10a
    • /
    • pp.292-295
    • /
    • 2001
  • A Study on the precipitation characteristics of nickel hydroxide as well as carbonate and sulfide is carried out to determine the proper treatment condition of the wastewater induced from nickel-plating industry. The nickel concentrations in the effluent could be kept lower than 5ppm when the value of pH was maintained higher than 10. The precipitation of nickel salts by alkaline addition to the nickel containing model wastewater was conducted by using proper amount of sodium hydroxide, sodium carbonate, sodium bicarbonate and sodium sulfide. In case of the sulfide treatment, the residual nickel concentration in the clear water after precipitates removed showed the lowest value. The influences of the precipitation condition upon the particle size of the crystals precipitated were also investigated. In spite of the various precipitation conditions were adopted, the particle size of the precipitated crystals showed no great differences. The sedimentation rates of the precipitated particle bed were observed and the free sedimentation period was terminated within 20 minutes. Although the hindered sedimentation as well as bed compaction progressed subsequently, the bed heights were maintained almost the same level after two hours of sedimentation.

  • PDF

Experiments on Sedimentation of Particles in a Water Pool with Gas Inflow

  • Kim, Eunho;Jung, Woo Hyun;Park, Jin Ho;Park, Hyun Sun;Moriyama, Kiyofumi
    • Nuclear Engineering and Technology
    • /
    • v.48 no.2
    • /
    • pp.457-469
    • /
    • 2016
  • During the late phase of severe accidents of light water reactors, a porous debris bed is expected to develop on the bottom of the flooded reactor cavity after breakup of the melt in water. The geometrical configuration, i.e., internal and external characteristics, of the debris bed is significant for the adequate assessment of the coolability of the relocated corium. The internal structure of a debris bed was investigated experimentally using the DAVINCI (Debris bed research Apparatus for Validation of the bubble-Induced Natural Convection effect Issue) test facility. Particle sedimentation under the influence of a two-phase natural convection flow due to the decay heat in the debris bed was simulated by dropping various sizes of particles into a water vessel with air bubble injection from the bottom. Settled particles were collected and sieved to obtain the particle mass, size distribution in the radial and axial positions, and the bed porosity and permeability. The experimental results showed that the center part of the particle bed tended to have larger particles than the peripheral area. For the axial distribution, the lower layer had a higher fraction of larger particles. As the sedimentation progressed, the size distribution in the upper layers can shift to larger sizes because of the higher vapor generation rate and stronger flow intensity.

Analysis of Flow and Bed Change on Hydraulic Structure using CCHE2D : Focusing on Changnyong-Haman (CCHE2D를 이용한 수리구조물에 의한 흐름 및 하상변동 연구 -창녕함안보를 중심으로-)

  • Ahn, Jung Min;Lyu, Siwan
    • Journal of Korea Water Resources Association
    • /
    • v.46 no.7
    • /
    • pp.707-717
    • /
    • 2013
  • Channel-bed of erosion and sedimentation, where eroded bed and bank materials re-deposit through the action of flow, is a natural phenomenon in alluvial systems. Analysis using a numerical model is important to understand the sediment transport mechanism associated with erosion and sedimentation near weirs and other hydraulic structures within riverine systems. The local riverbed change near a hydraulic structure (Changnyong-Haman multi-function weir in Nakdong river) has been analyzed in order to examine the effect of hydraulic structure on local bed change. A 2D numerical model (CCHE-2D) has been implemented to simulate the sedimentation and erosion over a reach (10 km) including the weir. For the calibration and verification of the model, the rainfall data from a real event (Typoon 'Maemi' in 2003) has been used for flow and stage simulation. And the simulated results show a good agreement with the observed data for whole domain. From the result, it was found that the installation and operation of weir can aggravate the local bed change caused from the flow field change and resulting redistribution of sediment.

A Quasi-Steady Model for Sedimentation and Flushing of Reservoirs (저수지 퇴배사 모의를 위한 준정류모형)

  • Choi, Sung-Uk;Choi, Seong-Wook
    • Journal of Korea Water Resources Association
    • /
    • v.45 no.2
    • /
    • pp.217-227
    • /
    • 2012
  • This paper presents a quasi-steady model for numerical simulations of reservoir sedimentation and reservoir flushing. The quasi-steady model is based on the assumption that the flow is steady with time-dependent stream morphology change. This is reasonable because stream morphology changes over a long period, while the flow changes rapidly. The proposed model is first applied to two laboratory experiments for reservoir sedimentation. The channel is shown to be adjusted to new sediment supply at the upstream by changing both the flow depth and slope. Simulated water surface and bed profiles compare favorably to measured data. The model is also applied to reservoir flushing. Good agreement between simulated and measured data is not obtained due to time variation of outflow generated to facilitate the flushing in the experiment. Finally, relationships for equilibrium flow depth and bed slope are proposed and tested through numerical experiments.

Analysis for the Effectiveness of Sedimentation Reduction Using the Channel Contraction Method at the Estuary Barrage (하구둑에서의 하폭축소 방법을 이용한 퇴사저감 효과 분석)

  • Ji, Un;Kim, Gwon-Han;Yeo, Woon-Kwang
    • Journal of Korea Water Resources Association
    • /
    • v.44 no.1
    • /
    • pp.31-40
    • /
    • 2011
  • In this study, the methods of sedimentation reduction for the estuary barrage were analyzed using the CCHE2D bed change model. Especially, the effectiveness of sediment dredging currently applied in the field was evaluated quantitatively and also the channel contraction method which is a substitute method was analyzed for the Nakdong River Estuary Barrage (NREB). The numerical model was calibrated and validated for the sediment transport equations and transport modes. In the NREB case, the Ackers and White formula and bed load type was the most similar to the field condition. As a results of the dredging simulation, there was the sedimentation reduction effect of 0.2 m in the bed changes. Furthermore, the analysis result of the channel contraction method represented that the sedimentation reduction effects of the average 0.4 m and the maximum 2.0 m were produced.

Construction and Monitoring of Test bed in Urban Sediment Disaster Prevention Technology (도심지 토사재해 방어기술 테스트베드 구축 및 모니터링 연구)

  • Lee, Jung-min;Kim, Hyo-Jin;Lee, Yoon-Sang;Jin, Kyu-Nam
    • Land and Housing Review
    • /
    • v.8 no.3
    • /
    • pp.161-169
    • /
    • 2017
  • In this study, sediment transfer and precipitation analysis of the test bed watershed was conducted through the model for the application and practical use of the urban sediment disaster prevention technology, and used this as an aid to design to secure reliability. In addition, conducted the test bed monitoring with the defense technology, analyzed the effect, and established the maintenance plan. Analyzed the change of soil deposition volume through arbitrary slope adjustment for the currently installed stormwater conduit of the test bed watershed. As a result, it is important to reduce the total sedimentation amount in the adjustment of the slope of the entire pipeline, but it is important that the sedimentation depth of each sediment does not rise to such a degree as to threaten the performance of the pipeline. Considering these matters, it is necessary to design the pipeline to prevent the clogging of the soil from the viewpoint of the reliability of the entire pipeline. The sediment disaster defense technology test bed is divided into a new city and an old city, and old city test bed is under construction. The result obtained through the monitoring of the test bed in the new city, sediment disasters such as debris can delay the time to reach the downtown area, and it is possible to secure the golden time, such as evacuation and rescue through the warning system. Also, the maintenance of the test bed application was suggested. Continuous and systematic monitoring is required for securing the reliability of element technology and successful commercialization.