• Title/Summary/Keyword: Sediment remediation

Search Result 53, Processing Time 0.024 seconds

The application of DGTs for assessing the effectiveness of in situ management of Hg and heavy metal contaminated sediment

  • Bailon, Mark Xavier;Park, Minoh;Choi, Young-Gyun;Reible, Danny;Hong, Yongseok
    • Membrane and Water Treatment
    • /
    • v.11 no.1
    • /
    • pp.11-23
    • /
    • 2020
  • The effectiveness of in situ sediment capping as a technique for heavy metal risk mitigation in Hyeongsan River estuary, South Korea was studied. Sites in the estuary were found previously to show moderate to high levels of contamination of mercury, methylmercury and other heavy metals. A 400 m × 50 m section of the river was selected for a thin layer capping demonstration, where the total area was divided into 4 sections capped with different combinations of capping materials (zeolite, AC/zeolite, AC/sand, zeolite/sand). Pore water concentrations in the different sites were studied using diffusive gradient in thin film (DGT) probes. All capping amendments showed reduction in the pore water concentration of the different heavy metals with top 5 cm showing %reduction greater than 90% for some heavy metals. The relative maxima for the different metals were found to be translated to lower depths with addition of the caps. For two-layered cap with AC, order of placement should be considered since AC can easily be displaced due to its relatively low density. Investigation of methylmercury (MeHg) in the site showed that MeHg and %MeHg in pore water corresponds well with maxima for sulfide, Fe and Mn suggesting mercury methylation as probably coupled with sulfate, Fe and Mn reduction in sediments. Our results showed that thin-layer capping of active sorbents AC and zeolite, in combination with passive sand caps, are potential remediation strategy for sediments contaminated with heavy metals.

Development of Dredging Index for the Rational Remediation of Polluted Coastal Sediments (연안해역 오염퇴적물개선을 위한 준설판단지수(Dredging Index, DI) 개발)

  • Lee Chan-Won;Kwon Young-Tack;Yun Ji-Hoon
    • Journal of the Korean Society for Marine Environment & Energy
    • /
    • v.7 no.2
    • /
    • pp.70-74
    • /
    • 2004
  • There is a need to have a dredging index for decision of contaminated sediments dredging. Some differences from nation to nation were found in sediment quality guideline being applied by several nations because of economic level, environmental nature, and multiple uses. Therefore, it is not reasonable to adapt one guideline to be applied to sediments dredging. In this study, we developed dredging index by combining four numerical sets of sediment quality judgement into a quadrodiagram for prudential decisions. This newly developed dredging index was applied to the data obtained from Masan Bay before and after the dredging process. The quadrodiagrams of DI give us a nice graphical comparison and numerical values to explain the relative dredging effect under the circumstances of continuous input loadings. When the guideline value of DI is determined for the judgement of dredging considering social and economic impacts on local community, the DI value will be a scientific and reasonable tool in deciding dredging area and dredging depth.

  • PDF

A METHODOLOGY TO EVALUATE THE EFFECTIVENESS OF REGIONAL SCALE FOR NON-POINT SOURCE LOADS

  • Lee, Ju-Young;Choi, Jae-Young
    • Environmental Engineering Research
    • /
    • v.11 no.4
    • /
    • pp.194-200
    • /
    • 2006
  • Recently, the population growth, industrial and agricultural development are rapidly undergoing in the Lower Rio Grande Valley (LRGV) in Texas. The Lower Rio Grande Valley (LRGV) composed of the 4 counties and three of them are interesting for Non-point and point source pollutant modeling: Starr, Cameron, and Hidalgo. Especially, the LRGV is an intensively irrigation region, and Texas A&M University Agriculture Program and the New Mexico State University College of Agriculture applied irrigation district program, projects in GIS and Hydrology based agricultural water management systems and assessment of prioritized protecting stream network, water quality and rehabilitation based on water saving potential in Rio Grande River. In the LRGV region, where point and non-point sources of pollution may be a big concern, because increasing fertilizers and pesticides use and population cause. This project objective seeks to determine the accumulation of non-point and point source and discuss the main impacts of agriculture and environmental concern with water quality related to pesticides, fertilizer, and nutrients within LRGV region. The GIS technique is widely used and developed for the assessment of non-point source pollution in LRGV region. This project shows the losses in $kg/km^2/yr$ of BOD (Biological Oxygen Demand), TN (total Nitrogen) and TP (total phosphorus) in the runoff from the surface of LRGV. Especially, farmers in Cameron County consume a lot of fertilizer and pesticide to improve crop yield net profit. Then, this region can be created as larger nonpoint source area for nutrients and the intensity of runoff by excess irrigation water. And many sediment and used irrigation water with including high nutrients can be discharged into Rio Grade River.

Application of Lime Stone, Sand, and Zeolite as Reactive Capping Materials for Marine Sediments Contaminated with Organic Matters and Nutrients (유기물 및 영양염류로 오염된 해양퇴적물 정화를 위한 석회석, 모래, 제올라이트의 반응성 피복 소재로서 적용성 평가)

  • Kang, Ku;Park, Seong-Jik
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.39 no.8
    • /
    • pp.470-477
    • /
    • 2017
  • In this study, the applicability of calcite, sand, and zeolite for the remediation of sediments contaminated with organics and nutrients were investigated. Sediments and seawater for water tank experiments were sampled from Pyeongtaek harbor, and 1 cm or 3 cm of calcite, sand, and zeolite were capped on the sampled sediments. pH, electric conductivity (EC), dissolved oxygen (DO), chemical oxygen demand (COD), total nitrogen (TN), and total phosphorus (TP) were monitored for 63 days. The sampled sediments were highly contaminated with organic matter and total nitrogen. DO in uncapped condition was exhausted within 10 days but DO in capping condition except 3 cm of zeolite capping was prolonged above 2 mg/L. Capping efficiency for interrupting COD release from sediments was in the following order: zeolite 1 cm > calcite 1 cm > calcite 3 cm > sand 3 cm ${\cong}$ zeolite 3 cm ${\cong}$ sand 1 cm. Zeolite was found to be effective for interrupting nitrogen release. T-P was not observed in both uncapped and capped sediment, i.e., all experimental conditions. It can be concluded that zeolite can be effectively used for the remediation of sediments highly contaminated with organic matter and nitrogen.

Treatability of Heavy Metals in the Washing Technology of Marine Sediments Contaminated with Organic Matter (세척기반처리에 의한 해양오염퇴적물에 함유된 유기 오염물질 제거 공정 중 중금속 처리 가능성)

  • Sim, Young Sub;Kim, Kyoung Rean;Kim, Suk Hyun
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.36 no.12
    • /
    • pp.851-857
    • /
    • 2014
  • Treatability of heavy metals in marine sediments contaminated with mainly organic matter was investigated on the basis of washing technology using oxidizers and surfactants. Sediment samples were collected at N area which expected for remediation project of contaminated marine sediment. For additives, hydrogen peroxide ($H_2O_2$) and Tween-80 were used at oxidizer and nonionic surfactant, respectively. In experiments, sediments was mixed with sea water at the ratio of 1 : 3 than $H_2O_2$ (1 M, 3 M, 4 M, 5 M) and Tween-80 (0.05%) were added. Samples were gathered at following reaction time (10, 20, 30, 40, 50, 60, 70, 80 min and 24 h). Total Organic Carbon (TOC) was 55.2% at the conditions of 5 M $H_2O_2+0.05%$ Tween-80 24 h. Hence total heavy metals were Cu 29.5%, Zn 42.3%, Cd 73.0% and bioavailable heavy metals were Cu 60.0%, Zn 77.7%, Cd 90.2% at the conditions of 5 M $H_2O_2+0.05%$ Tween-80 10 min. The correlations for between bioavailable metals (Cu, Zn, Cd) and TOC were significant (Cu, Zn, Cd; $r^2=0.94$, 0.85, 0.69, respectively).

Changes in Sediment Properties Caused by a Covering of Oyster Shells Pyrolyzed at a Low Temperature (저온 소성 굴 패각의 피복에 의한 연안 오염 퇴적물의 성상 변화에 관한 연구)

  • Kim, Hyung-Chul;Woo, Hee-Eun;Jeong, Ilwon;Oh, Seok-Jin;Lee, Seong-Ho;Kim, Kyunghoi
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.25 no.1
    • /
    • pp.74-80
    • /
    • 2019
  • In this study, pyrolyzed oyster shells at a low temperature ($350^{\circ}C$) were applied for a mesocosm experiment to confirm resulting changes in the properties of sediment. After creating a covering of oyster shells, an increase in ORP and decrease in ammonia in the overlying water was observed in an experimental case. The decrease of TOC in this experiment was due to the dilution of organic matter due to the addition of inorganic matter (pyrolyzed oyster shells). The decrease in the concentration of AVS was observed due to the adsorption of AVS by the surface of the oyster shells. From the results obtained in this experiment, it has been concluded that pyrolyzed oyster shells at a low temperature can be used for remediation of polluted sediment.

Bioremediation of Polycyclic aromatic hydrocarbons (PAHs) and Heavy metals in contaminated marine sediments at filed scale study using biostimulant ball (오염연안저질에 함유된 PAH와 중금속의 생물정화를 위한 생물활성촉진제의 현장적용)

  • Woo, Jung-Hui;Subha, Bakthavachallam;Song, Young-chae
    • Proceedings of the Korean Institute of Navigation and Port Research Conference
    • /
    • 2016.05a
    • /
    • pp.132-134
    • /
    • 2016
  • The Study mainly focused on bioremediation of 16 types PAHs and heavy metals in contaminated marine sediments at filed scale study using slow release biostimulant ball (BSB) was investigated. In our experiment, filed scale study ($1m{\times}1m$) was performed and the effect of BSB on PAHs and heavy metals were analysed. BSB size and distance were determined and optimum size and distance were 3cm and 5.5cm respectively. BSB containing nutrients of acetate, nitrate and sulphate which can enhance the activity of microorganism to increase degrading capacity of PAHs and enhance the heavy metals stabilization also to decrease bioavailability. PAHs containing 16 types of 2, 3, 4, 5 and 6 rings compound PAHs were found and to degrade upto 100% in 2, 3 rings, upto 90 to 94% in 4 and 5 rings and 6 ring compound was degrade up to 70%. For heavy metals stabilization percentage was increased using BSB sediment and exchangeable portion was decreased and residual portion was increased in all analysed heavy metals. BSB enhance the PAHs degradation and stabilization of heavy metals percentages. BSB is a promising method for remediation of PAHs and heavy metals in contaminated marine sediments.

  • PDF

Estimation of Contamination Level of Sediments Obtained from the Outport of Jeju Harbor (제주외항 퇴적토 오염도 평가)

  • Lee, Sangmin;Kim, Dongsoo;Lee, Tae-Yoon
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.37 no.3
    • /
    • pp.191-196
    • /
    • 2015
  • In this study, physico-chemical properties and heavy metal contents of sediment samples were determined to characterize the current pollution levels of the sediments. Ignition loss of the samples obtained from outside of the harbor was relatively lower than that from the samples obtained inside of the harbor. Heavy metal pollution was not serious except Ni. Concentrations of Ni for J1, J3, and J4 exceeded 16 mg/kg. Thus, these areas were classified as lowest effect level according to Ontario sediment quality guidelines. Evaluation of sediments pollution using $I_{geo}$ and R resulted as non-pollution for all considered metals, which indicated that no outer pollutants entered in the Jeju outport harbor. However, drastic increase of Cu concentrations was observed. Its concentration obviously increased toward the inside of the outport harbor. Therefore, careful attention and plan for the protection and remediation of sediments is required to maintain the cleanness of the Jeju outport harbor.

Efficient Clean-up of Oil Spilled Shorelines Using the Compressed Air Jet System and Concomitant Microbial Community Analysis (압축공기 분사시스템을 이용한 유류오염 해안의 효율적 정화 및 이에 따른 미생물군집분석)

  • Chang, Jae-Soo;Kim, Kyung Hee;Lee, Jae Shik;Ekpeghere, Kalu I.;Koh, Sung-Cheol
    • Korean Journal of Microbiology
    • /
    • v.49 no.4
    • /
    • pp.353-359
    • /
    • 2013
  • The objectives of this study were to investigate effectiveness of the Compressed Air Jet (CAJ) System for cleaning up shorelines contaminated with crude oils and to examine effects of the system on total petroleum hydrocarbon (TPH) removal and microbial community changes before and after remediation of the oil-contaminated shorelines. These data will lead to better understanding of optimized remediation process. About 66% of TPH reduction was observed when the contaminated site was treated with the CAJ System 2, 3, 4, and 5 times. This treatment system was more efficient than the seawater pumping system under similar treatment conditions (by 40%). By the way, little oil degrader communities were observed despite a potential function of the air jet system to stimulate aerobic oil degraders. The apparent low population density of the oil degraders might be as a result of low concentration of TPH as a carbon source and limiting nutrients such as nitrogen and phosphorus. It was proposed that the CAJ System would contribute significantly to removal of residual oils on the shorelines in combination with addition of these limiting nutrients.

Treatment of Contaminated Sediment for Water Quality Improvement of Small-scale Reservoir (소하천형 호수의 수질개선을 위한 퇴적저니 처리방안 연구)

  • 배우근;이창수;정진욱;최동호
    • Journal of Soil and Groundwater Environment
    • /
    • v.7 no.4
    • /
    • pp.31-39
    • /
    • 2002
  • Pollutants from industry, mining, agriculture, and other sources have contaminated sediments in many surface water bodies. Sediment contamination poses a severe threat to human health and environment because many toxic contaminants that are barely detectable in the water column can accumulate in sediments at much higher levels. The purpose of this study was to make optimal treatment and disposal plan o( sediment for water quality improvement in small-scale resevoir based on an evaluation of degree of contamination. The degree of contamination were investigated for 23 samples of 9 site at different depth of sediment in small-scale J river. Results for analysis of contaminated sediments were observed that copper concentration of 4 samples were higher than the regulation of hazardous waste (3 mg/L) and that of all samples were exceeded soil pollution warning levels for agricultural areas. Lead and mercury concentration of all samples were detected below both regulations. Necessary of sediment dredge was evaluated for organic matter and nutrient through standard levels of Paldang lake and the lower Han river in Korea and Tokyo bay and Yokohama bay in Japan. The degree of contamination for organic matter and nutrient was not serious. Compared standard levels of Japan, America, and Canada for heavy metal, contaminated sediment was concluded as lowest effect level or limit of tolerance level because standard levels of America and Canada was established worst effect of benthic organisms. The optimal treatment method of sediment contained heavy metal was cement-based solidification/stabilization to prevent heavy metal leaching.