• Title/Summary/Keyword: Sediment quality

Search Result 593, Processing Time 0.023 seconds

Development of a Hybrid Watershed Model STREAM: Model Structures and Theories (복합형 유역모델 STREAM의 개발(I): 모델 구조 및 이론)

  • Cho, Hong-Lae;Jeong, Euisang;Koo, Bhon Kyoung
    • Journal of Korean Society on Water Environment
    • /
    • v.31 no.5
    • /
    • pp.491-506
    • /
    • 2015
  • Distributed models represent watersheds using a network of numerous, uniform calculation units to provide spatially detailed and consistent evaluations across the watershed. However, these models have a disadvantage in general requiring a high computing cost. Semi-distributed models, on the other hand, delineate watersheds using a simplified network of non-uniform calculation units requiring a much lower computing cost than distributed models. Employing a simplified network of non-uniform units, however, semi-distributed models cannot but have limitations in spatially-consistent simulations of hydrogeochemical processes and are often not favoured for such a task as identifying critical source areas within a watershed. Aiming to overcome these shortcomings of both groups of models, a hybrid watershed model STREAM (Spatio-Temporal River-basin Ecohydrology Analysis Model) was developed in this study. Like a distributed model, STREAM divides a watershed into square grid cells of a same size each of which may have a different set of hydrogeochemical parameters reflecting the spatial heterogeneity. Like many semi-distributed models, STREAM groups individual cells of similar hydrogeochemical properties into representative cells for which real computations of the model are carried out. With this hybrid structure, STREAM requires a relatively small computational cost although it still keeps the critical advantage of distributed models.

Hourly SWAT Watershed Modeling for Analyzing Reduction Effect of Nonpoint Source Pollution Discharge Loads (비점원오염 저감효과 분석을 위한 시단위 SWAT 유역 모델링)

  • Jang, Sun Sook;Ahn, So Ra;Choi, Joong Dae;Kim, Seong Joon
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.57 no.1
    • /
    • pp.89-97
    • /
    • 2015
  • This study is to assess the effect of non-point source pollution discharge loads between tillage and no-tillage applications for upland crop areas using SWAT (Soil and Water Assessment Tool) watershed modeling. For Byulmi-cheon small rural catchment ($1.17km^2$) located in upstream of Gyeongan-cheon watershed, the rainfall, discharge and stream water quality have been monitored in the catchment outlet since 2011. The SWAT model was calibrated and validated in hourly basis using 19 rainfall events during 2011-2013. The average Nash-Sutcliffe model efficiency and $R^2$ (determination coefficient) for streamflow were 0.67 and 0.79 respectively. Using the 10 % surface runoff reduction from experiment results for no-tillage condition in field plots of 3 % and 8 % slopes under sesami cultivation, the soil saturated hydraulic conductivity for upland crop areas was adjusted from 0.001 mm/hr to 0.0025 mm/hr in average. Under the condition, the catchment sediment, T-N (total nitrogen, TN), and T-P (total phosphorus, TP) discharge loads were reduced by 6.9 %, 7.4 %, and 7.7 % respectively.

Hydrogeological Characteristics of a Riverine Wetland in the Nakdong River Delta, Korea

  • Jeon, Hang-Tak;Cha, Eun-Ji;Lim, Woo-Ri;Yoon, Sul-Min;Hamm, Se-Yeong
    • Journal of the Korean earth science society
    • /
    • v.42 no.4
    • /
    • pp.425-444
    • /
    • 2021
  • Investigating the physical and chemical properties of riverine wetlands is necessary to understand their distribution characteristics and depositional environment. This study investigated the physical (particle size, color, and type) and chemical properties (organic, inorganic, and moisture contents) of sediments in Samrak wetland, located in the Nakdong River estuary area in Busan, South Korea. The particle size analysis indicated that the hydraulic conductivity values for the coarse grain and the mixture of coarse and fine grains ranged from 2.03 to 3.49×10-1 cm s-1 and 7.18×10-3 to 1.24×10-7 cm s-1, respectively. In-situ water quality and laboratory-based chemical analyses and radon-222 measurement were performed on groundwater and surface water in the wetland and water from the nearby Nakdong River. The physical and chemical properties of Samrak wetland was characterized by the sediments in the vertical and lateral direction. The concentrations of chemical components in the wetland groundwater were distinctly higher than those in the Nakdong River water though the wetland groundwater and Nakdong River water equally belonged to the Ca-HCO3 type.

Diagnosis of Development Projects and Water Quality Changes in the Environmental Management Sea Areas and Improvement of Impact Assessment (환경관리해역의 이용개발현황과 수질변화경향 및 영향평가 개선방안)

  • Jun, Eun Ju;Yi, Yong Min;Lee, Dae In;Kim, Gui Young
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.24 no.6
    • /
    • pp.726-734
    • /
    • 2018
  • The total number of Sea Area Utilization Consultation in the environment management sea areas reviewed from 2015 to 2017 were 60. The number of development projects in the environment conservation sea areas decreased steadily, but special management sea areas increased. Development types in environment management sea areas showed that artificial structure installation was the highest ratio, followed by fishery port development and construction of habor and coastal maintenance and sea water intake and draining. By comparing the trend of water quality changes using marine environment information system (MEIS) data in the environment management areas from 2006 to 2017, COD showed no significant changes but the environment conservation sea areas increased slightly, and the concentration of TN and TP decreased. Gwangyang and Masan bays in the special management sea areas and Gamak bay in the environment conservation sea areas displayed oxygen deficient mass in the summer. As the use of development projects of the environment management sea areas are performed continuously, an analysis of the status of sufficient water quality changes is necessary for environmental impact assessment (Sea Area Utilization Consultation) in the marine environment and should be evaluated mainly for management of contamination by diagnosing thoroughly water quality effects and the pollution of sediment. Especially, the water quality goal for the purpose of designation in each of the environment management sea areas is set clearly, connection with pollution source control and the total pollution load management system (TPLMS) should be proposed and measured to reduce the amount of contaminated water.

Analysis of NPS Pollution reduction from No-till Field (무경운 밭에서의 비점오염물질 저감효과 분석)

  • Lee, Su In;Won, Chul Hee;Shin, Min Hwan;Shin, Jae Young;Jeon, Je Hong;Choi, Joong Dae
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.57 no.4
    • /
    • pp.51-59
    • /
    • 2015
  • Various Best Management Practices (BMPs) have been suggested to reduce soil erosion and non point source (NPS) pollutant loads from agricultural fields. However, very little research regarding water quality improvement with No-till (NT) has been performed in Korea. Thus, effects of NT were investigated in this study. The objective of the study was to investigate the effect of NT on the surface runoff and sediment discharge in a field. Eight experimental plots of $5{\times}30m$ in size and 3 % or 8 % in slope prepared on gravelly sandy loam soil were treated with Conventional-till (CT) and NT. Runoff and NPS pollution discharge were monitored and compared the treatments. The amounts of rainfall from 13 monitored events ranged from 28.7 mm to 503.5 mm. The runoff amount was reduced by 17.6~59.2 % in 3 % NT and 29.6~53.2 % in 8 % NT. The average NPS pollution loads of the 3 % NT plots and 8 % NT plot were reduced about 45.1~89.2 % and 47.7~98.0 % compared to those of the CT plots, respectively. This research revealed that NT can reduce the NPS pollution loads substantially as well as increase the crop yield. Runoff and NPS pollution loads reduction by NT method could be contribute to improve the water quality of streams in agricultural regions.

Environmental Evaluation of Fish Aquafarm off Baegyado in Yeosu by Multivariate Analysis (다변량분석에 의한 여수 백야도 어류양식장의 해양 환경분석)

  • LEE, Chang-Hyeok;KANG, Man-Gu;LIM, Su-Yeon;KIM, Jae-Hyun;SHIN, Jong-Ahm
    • Journal of Fisheries and Marine Sciences Education
    • /
    • v.29 no.3
    • /
    • pp.785-798
    • /
    • 2017
  • This study was conducted to evaluated the surface(10 variables) and bottom(10 variables) water quality, and sediment(3 variables) in the cage fish farm off Baegyado in Gamak Bay using a multivariate analysis from January 2013 to November 2014. Generally, the environmental data did not show a certain tendency by months during two years investigated. The pairwise simple correlation matrices among variables were also shown. The first four principal components of the surface water in 2013 explain 93% of the total sample variance; the first principal component($z_1$) showed the freshwater inflow and/or precipitation, $z_2$, $z_3$ and $z_4$ related to freshwater inflow and/or precipitation, organic matters and eutrophy, respectively; the first four principal components of the bottom water in 2013 explain 93% of the total sample variance; the $z_1$, $z_2$ and $z_4$ related to freshwater inflow and/or precipitation, and $z_3$ water temperature. In 2014, at the surface water the first three principal components explain 87%; the $z_1$, $z_2$ and $z_3$ related to water temperature, eutrophy and freshwater inflow and/or precipitation, respectively; at the bottom water the first three principal components explain 93%; $z_1$, $z_2$ and $z_3$ related to water temperature, freshwater inflow and/or precipitation and eutrophy. Half of the principal components related to freshwater inflow and/or precipitation.

Eco-river Restoration and River Management in Response to Climate Change (기후변화를 고려한 생태하천 복원 및 관리방향에 관한 연구)

  • Kang, Hyeongsik
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.34 no.1
    • /
    • pp.155-165
    • /
    • 2014
  • In this study, using a complex of physical, chemical, and biological evaluation factors, the ecological vulnerability to climate change were evaluated at each river in the Nakdong river basin. First, runoff, sediment rate, and low flow discharge changes according to AIB climate change scenario using the SWAT model were simulated. Also, for the assessment of chemical and biological factors, 48 points that water quality monitoring sites and ecological health measurement points are matched with each other was selected. The water quality data of BOD and T-P and the biological data of IBI and KSI in each point were reflected in the assessment. Also, the future rise in water temperature of the rivers in Nakdong river basin was predicted, and the impact of water temperature rise on the fish habitat was evaluated. The top 10 most vulnerable points was presented through a summary of each evaluation factor. This study has a contribution to river restoration or management plan according to the characteristics of each river.

Analysis of NPS Pollution Loads over Rainfall-Runoff Events from the Silica Mine Site (규사광산 지역의 강우시 비점오염원의 유출분석)

  • Choi, Yong-hun;Won, Chul-hee;Seo, Ji-yeon;Shin, Min-Hwan;Yang, Hee-Jeong;Choi, Joong-dae
    • Journal of Korean Society on Water Environment
    • /
    • v.26 no.3
    • /
    • pp.413-419
    • /
    • 2010
  • A silica mine monitoring was conducted from March to December in 2008 to measure rainfall, runoff amounts and pollution loads. A total of 13 rainfall-runoff events were measured and analyzed with respect to runoff ratio, pollutant concentration and load, and initial flush. Over rainfall-runoff events, 95% confidence range of SS concentration was 942.5~2,056.2 mg/L. Other measured water quality indices also showed relatively large variation. This wide concentration variation was thought to be caused by the bare working ground of the mine that was used to store, process and transport the mined silica. Total pollution load of the 13 rainfall-runoff events was SS 17,901 kg/ha, $COD_{Cr}$ 160.9 kg/ha, $COD_{Mn}$ 111.24 kg/ha, BOD 79.6 kg/ha, T-N 13.8 kg/ha, T-P 3.5 kg/ha, and TOC 39.3 kg/ha. Initial flush was not well observed except SS. Very high SS concentration and load was occurred when rainfall was large. Therefore, it was recommended to manage the bare ground not to discharge excessive pollutants during wet days by covering the ground or constructing runoff treatment systems such as a sediment basin.

Growth of Two Native Zoysiagrasses Collected from Sea Side and Mountain Area in Indonesia on Growing Media Composed of Sand and Clay

  • Rahayu, Rahayu;Dewantoro, Hery;Arianto, Dwi Priyo;Bae, Eun-Ji;Choi, Su-Min;Lee, Kwang-Soo;Yang, Geun-Mo;Choi, Joon-Soo
    • Weed & Turfgrass Science
    • /
    • v.7 no.1
    • /
    • pp.54-61
    • /
    • 2018
  • Zoysiagrass (Zoysia spp.) exists spotly in Indonesia and it has potential to be used in parks, golf courses, and football fields. Many football fields and golf course fairways use sand as top soil over native soil. This study aims to analyze growth and quality of two native zoysiagrasses Zis and Zim. Zis is a native zoysiagrass collected in sea-side and Zim is a native zoysiagrass collected in mountain area. Both types of zoysiagrasses were planted at field with altitude of 300 m with various growing media mixes of sand and reservoir's sediment. Thickness of the growing medium was 10 cm over an alfisol clay soil. Experimental plots were constructed using factorial completely randomized design with two native zoysiagrasses and 5 types of growing media. Two ecotypes of native zoysiagrasses showed different in growth habits combined with mixtures of growth media. Zim showed higher growing speed including more vigor with uniformity and texture than Zis. There were not significanthly differences on leaf color and root length between two ecotypes of native zoysiagrasses collected in Indonesia.

Management Strategies to Conserve Soil and Water Qualities in the Sloping Uplands in Korea (한국의 경사지 밭의 토양 및 물의 보전 관리 전략)

  • Yang, Jae-E.;Ryu, Jin-Hee;Kim, Si-Joo;Chung, Doug-Young
    • Korean Journal of Agricultural Science
    • /
    • v.37 no.3
    • /
    • pp.435-449
    • /
    • 2010
  • Soils in the sloping uplands in Korea are subject to intensive land use with high input of agrochemicals and are vulnerable to soil erosion. Development of the environmentally sound land management strategy is essential for a sustainable production system in the sloping upland. This report addresses the status of upland agriculture and the best management practices for the uplands toward the sustainable agriculture. More than 60% of Korean lands are forest and only 21% are cultivating paddy and upland. Uplands are about 7% of the total lands and about 62% of the uplands are in the slopes higher than 7%. Due to the site-specificity of the upland, many managerial and environmental problems are occurring, such as severe erosion, shallow surface soils with rocky fragments, and loadings of non-point source (NPS) contaminants into the watershed. Based on the field trials, most of the sloping uplands were classified as Suitability Class III-V and the major limiting factor was slope and rock fragments. Due to this, soils were over-applied with N fertilizer, even though N rate was the recommendation. This resulted in decreases in yield, degradation of soil quality and increases in N loading to the leachate. Various case studies drew management practices toward sustainable production systems. The suggested BMP on the managerial, vegetative, and structural options were to practice buffer strips along the edges of fields and streams, winter cover crop, contour and mulching farming, detention weir, diversion drains, grassed waterway, and slope arrangement. With these options, conservation effects such as reductions in raindrop impact, flow velocity, runoff and sediment loss, and rill and gully erosion were observed. The proper management practice is a key element of the conservation of the soil and water in the sloping upland.