• Title/Summary/Keyword: Sediment processes

Search Result 258, Processing Time 0.035 seconds

Geostatistical Analysis of Soil Enzyme Activities in Mud Flat of Korea

  • Jung, Soohyun;Lee, Seunghoon;Park, Joonhong;Seo, Juyoung;Kang, Hojeong
    • Ecology and Resilient Infrastructure
    • /
    • v.4 no.2
    • /
    • pp.93-96
    • /
    • 2017
  • Spatial variations of physicochemical and microbiological variables were examined to understand spatial heterogeneity of those variables in intertidal flat. Variograms were constructed for understanding spatial autocorrelations of variables by a geostatistical analysis and spatial correlations between two variables were evaluated by applications of a Cross-Mantel test with a Monte Carlo procedure (with 999 permutations). Water content, organic matter content, pH, nitrate, sulfate, chloride, dissolved organic carbon (DOC), four extracellular enzyme activities (${\beta}-glucosidase$, N-acetyl-glucosaminidase, phosphatase, arylsulfatase), and bacterial diversity in soil were measured along a transect perpendicular to shore line. Most variables showed strong spatial autocorrelation or no spatial structure except for DOC. It was suggested that complex interactions between physicochemical and microbiological properties in sediment might controls DOC. Intertidal flat sediment appeared to be spatially heterogeneous. Bacterial diversity was found to be spatially correlated with enzyme activities. Chloride and sulfate were spatially correlated with microbial properties indicating that salinity in coastal environment would influence spatial distributions of decomposition capacities mediated by microorganisms. Overall, it was suggested that considerations on the spatial distributions of physicochemical and microbiological properties in intertidal flat sediment should be included when sampling scheme is designed for decomposition processes in intertidal flat sediment.

Structural and Layout Design Optimization of Ecosystem Control Structures (2) -Characteristics of Subsidence and Burial of Artificial Habitat due to Sediment Transport in Flow Field- (생태계 제어 시설물의 설계 및 배치 최적화(2) -흐름장에서의 인공어초의 침하 및 매몰 특성-)

  • RYU Cheong-RO;KIM Hyeon-Ju;LEE Han-Su;SHIN Dong-Il
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.30 no.1
    • /
    • pp.139-147
    • /
    • 1997
  • Sediment transport around artificial habitat which is induced by the change ol flow due to installation of the structure plays a role not only as a defect function of subsidence and burial but also bottom-environment control function. This study examined the characteristics of local scouring and deposition with sediment sizes, current velocities and installation direction of artificial habitat in flow field. Resultant subsidence and burial processes are investigated and discussed with Reynolds number. Together with sediment number and dimensionless time elapse, prediction formulas are established by combining these relationships. Bottom control function as cultivating effects is discussed with installation direction, and applicability of countermeasures is compared and stone pavement method is recommended.

  • PDF

Sedimentation in the lake catchments in South Korea

  • Orkhonselenge, A.;matsuoka, T.;Tanaka, Y.;Kashiwaya, K.;Kim, S.
    • The Korean Journal of Quaternary Research
    • /
    • v.19 no.1
    • /
    • pp.41-46
    • /
    • 2005
  • This study discusses the soil erosion on hillslopes and sediment deposition in lakes within catchments in South Korea. In order to determine seasonal variations of sedimentation in Yeongcheon and Seondong lakes, the sediment traps were set in the deep part of both lakes and lake sediments have been sampledmonthly from July 2004 to August 2005. Some properties such as highmineral content, fine particle size and high particle density in the Yeongcheon Lake indicate intensive soil erosion, sediment transportation and deposition throughout the catchment for a long time. The high sediment yield in the Seondong Lake is related with higher weathering intensity and extreme soil erosion by running water due to higher seasonal rainfall amount. Rates of erosion and sedimentation in the Seondong Lake are estimated to be higher than those of the Yeongcheon Lake, suggesting that the Seondong Lake is associated with higher precipitation, smaller catchment area, and extreme soil vulnerability to ephemeral erosion by overland flow during the heavy rainfall event. Consequently, both catchments are characterized by different erosion and sedimentation processes, as well as different geomorphic factors (bedrock, soil structure, rainfall intensity and catchment area).

  • PDF

A Tiered Approach of Washing and Stabilization to Decontaminate and Recycle Dredged River Sediment (세척과 안정화기술을 적용한 오염 준설토의 처리 및 재활용 시스템 개발)

  • Kim, Young-Jin;Nam, Kyoung-Phile;Lee, Seung-Bae;Kim, Byeong-Kyu;Kwon, Young-Ho;Hwang, In-Seong
    • Journal of Soil and Groundwater Environment
    • /
    • v.15 no.2
    • /
    • pp.47-54
    • /
    • 2010
  • Although the demands for the dredging work have been increasing due to social and industrial reasons including national plan for restoration of four major rivers, environmental standards or management guidelines for the dredged river sediment are limited. The suggested environmental standard for the beneficial use of dredged river sediment consists of two levels, recyclable and concern, and includes eight contaminants such as metals and organic contaminants. The systematic approach to remediate dredged river sediment is also suggested. The system consists of both washing and stabilization processes with continuous multi particle separation. In the early stage, the sediments are separated into two particle sizes. The coarse-grained sediment over 0.075 mm, generally decontaminated with less trouble, follows normal washing steps and is sent for recycling. The fine-grained sediments under 0.075 mm are separated again at 0.025 mm. The particles bigger than this second separation point are treated in two ways, advanced washing for highly contaminated sediments and stabilization for less. The lab test results show that birnessite and apatite are most effective stabilizing agents among tested for Cd and Pb. The most fine residues, down-sized by continuous particle separation, are finally sent for disposal. The system is tested for metals in this study, but is expected to be effective for organic contaminants included in the environmental standard, such as PAH and PCE. The feasibility test on the field site will be followed.

The Change of Suspended Sediment Concentration in the Seomjin River Estuary during Fall and Winter Months (추계와 동계 섬진강하구 부유퇴적물농도 변화)

  • Lee, Byoung-Kwan;Lee, Su-Woong;Kim, Seok-Yun
    • Journal of Korean Society on Water Environment
    • /
    • v.27 no.4
    • /
    • pp.542-550
    • /
    • 2011
  • Changes of suspended sediment concentration in the Seomjin river estuary located in south sea of the Korea peninsula were investigated during the spring tide in autumn (i.e. 25 hours in October) 2000 and winter (i.e. 25 hours in February) 2001. The changes of temperature and salinity during the spring tide in October 2000 showed larger variations than the those in February 2001. During the spring tide in October 2000, currents at bottom layer were observed to be stronger than during the spring tide in February 2001, showing that both of the two periods had ebb currents-predominant tide asymmetries. The suspended sediment concentrations in October 2000 were larger than the those in February 2001. At the time of the maximum of tide currents or after about one hour of the maximum during the autumn months, the suspended sediment turbidity was observed to be maximum. Another observation station at Hadong upstream from the Seomjin river estuary showed about one hour delay in tide phase, Thereby, the suspended sediment concentration showed high turbidity after two hours at bottom and three hours at surface layer, in particular, in October 2000. This results can be explained by the facts that river discharge increased significantly after the summer rainy season, causing also increase of erosion processes by strong current velocity at bottom layer.

Response of estuary flow and sediment transport according to different estuarine dam locations and freshwater discharge intervals

  • Steven Figueroa;Minwoo Son
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2023.05a
    • /
    • pp.519-519
    • /
    • 2023
  • Estuarine dams are a recent and global phenomenon. While estuarine dams can provide the benefit of improved freshwater resources, they can also alter estuarine processes. Due to the wide range of estuarine types and estuarine dam configurations, the effect of estuarine dams on estuaries is not well understood in general. To develop a systematic understanding of the effect of estuarine dam location and freshwater discharge interval on a range of estuarine types (strongly stratified, partially mixed, periodically stratified, and well-mixed), this study used a coupled hydrodynamic-sediment dynamic numerical model (COAWST) and compared flow, sediment transport, and morphological conditions in the pre- and post-dam estuaries. For each estuarine type, scenarios with dam locations at 20, 55 and 90 km from the mouth and discharge intervals of a discharge every 0.5, 3, and 7 days were investigated. The results were analyzed in terms of change in tide, river discharge, estuarine classification, and sediment flux mechanism. The estuarine dam location primarily affected the tide-dominated estuaries, and the resonance length was an important length scale affecting the tidal currents and Stokes return flow. When the location was less than the resonance length, the tidal currents and Stokes return flow were most reduced due to the loss of tidal prism, the dead-end channel, and the shift from mixed to standing tides. The discharge interval primarily affected the river-dominated estuaries, and the tidal cycle period was an important time scale. When the interval was greater than the tidal cycle period, notable seaward discharge pulses and freshwater fronts occurred. Dams located near the mouth with large discharge interval differed the most from their pre-dam condition based on the estuarine classification. Greater discharge intervals, associated with large discharge magnitudes, resulted in scour and seaward sediment flux in the river-dominated estuaries, and the dam located near the resonance length resulted in the greatest landward tidal pumping sediment flux and deposition in the tide-dominated estuaries.

  • PDF

Model Development for Specific Degradation Using Data Mining and Geospatial Analysis of Erosion and Sedimentation Features

  • Kang, Woochul;Kang, Joongu;Jang, Eunkyung;Julien, Piere Y.
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2020.06a
    • /
    • pp.85-85
    • /
    • 2020
  • South Korea experiences few large scale erosion and sedimentation problems, however, there are numerous local sedimentation problems. A reliable and consistent approach to modelling and management for sediment processes are desirable in the country. In this study, field measurements of sediment concentration from 34 alluvial river basins in South Korea were used with the Modified Einstein Procedure (MEP) to determine the total sediment load at the sampling locations. And then the Flow Duration-Sediment Rating Curve (FD-SRC) method was used to estimate the specific degradation for all gauging stations. The specific degradation of most rivers were found to be typically 50-300 tons/㎢·yr. A model tree data mining technique was applied to develop a model for the specific degradation based on various watershed characteristics of each watershed from GIS analysis. The meaningful parameters are: 1) elevation at the middle relative area of the hypsometric curve [m], 2) percentage of wetland and water [%], 3) percentage of urbanized area [%], and 4) Main stream length [km]. The Root Mean Square Error (RMSE) of existing models is in excess of 1,250 tons/㎢·yr and the RMSE of the proposed model with 6 additional validations decreased to 65 tons/㎢·yr. Erosion loss maps from the Revised Universal Soil Loss Equation (RUSLE), satellite images, and aerial photographs were used to delineate the geospatial features affecting erosion and sedimentation. The results of the geospatial analysis clearly shows that the high risk erosion area (hill slopes and construction sites at urbanized area) and sedimentation features (wetlands and agricultural reservoirs). The result of physiographical analysis also indicates that the watershed morphometric characteristic well explain the sediment transport. Sustainable management with the data mining methodologies and geospatial analysis could be helpful to solve various erosion and sedimentation problems under different conditions.

  • PDF

Evaluation of Effects on SWAT Simulated Hydrology and Sediment Behaviors of SWAT Watershed Delineation using SWAT ArcView GIS Extension Patch (SWAT ArcView GIS Extension Patch를 이용한 소유역 분할에 따른 수문 및 유사 거동에 미치는 영향 평가)

  • Heo, Sunggu;Kim, Namwon;Park, Younshik;Kim, Jonggun;Kim, Seong-joon;Ahn, Jaehun;Kim, Ki-sung;Lim, Kyoung Jae
    • Journal of Korean Society on Water Environment
    • /
    • v.24 no.2
    • /
    • pp.147-155
    • /
    • 2008
  • Because of increased nonpoint source runoff potential at highland agricultural fields of Kangwon province, effective agricultural management practices are required to reduce the inflow of sediment and other nonpoint source pollutants into the water bodies. The watershed-scale model, Soil and Water Assessment Tool (SWAT), model has been used worldwide for developing effective watershed management. However, the SWAT model simulated sediment values are significantly affected by the number of subwatershed delineated. This result indicates that the SWAT estimated watershed characteristics from the watershed delineation process affects the soil erosion and sediment behaviors. However, most SWAT users do not spend time and efforts to analyze variations in sediment estimation due to watershed delineation with various threshold value although topography falsification affecting soil erosion process can be caused with watershed delineation processes. The SWAT model estimates the field slope length of Hydrologic Response Unit (HRU) based on average slope of subwatershed within the watershed. Thus the SWAT ArcView GIS Patch, developed by using the regression relationship between average watershed slope and field slope length, was utilized in this study to compare the simulated sediment from various watershed delineation scenarios. Four watershed delineation scenarios were made with various threshold values (700 ha, 300 ha, 100 ha, and 75 ha) and the SWAT estimated flow and sediment values were compared with and without applying the SWAT ArcView GIS Patch. With the SWAT ArcView GIS Patch applied, the simulated flow values are almost same irrespective of the number of subwatershed delineated while the simulated flow values changes to some extent without the SWAT ArcView GIS Patch applied. However when the SWAT ArcView GIS Patch applied, the simulated sediment values vary 9.7% to 29.8% with four watershed delineation scenarios, while the simulated sediment values vary 0.5% to 126.6% without SWAT ArcView GIS applied. As shown, the SWAT estimated flow and sediment values are not affected by the number of watershed delineation significant compared with the estimated flow and sediment value without applying the SWAT ArcView GIS Patch.

Human Impacts on Urban Landscapes in North American Desert: A Case Study in the Phoenix, Arizona, USA (북아메리카 사막 지형에 미친 인류의 영향: 피닉스, 애리조나 지역을 사례로)

  • Jeong, Ara
    • Journal of The Geomorphological Association of Korea
    • /
    • v.26 no.3
    • /
    • pp.69-85
    • /
    • 2019
  • Humans have been important driver to reconfigure the terrestrial surface of the Earth by altering its morphology and processes. The effect of human activities on the physical landscape, however, shows substantially uneven geographical patterns. Most of anthrogemorphoogical studies regarding human-induced denudation have focused on areas with a long history of human modifications such as humid landscapes, so the hypothesis is naturally a great human impact on landscapes. The effect of human activities on dryland Earth surfaces are far less commonly studied, although erosion is one of major concerns in arid and semi-arid region regarding land and water quality degradation. The urban metropolis of Phoenix, Arizona, USA provides an opportunity to explore the impact of the Anthropocene. The Phoenix metropolitan area rests on classic desert landforms, such as extensive pediments, alluvial fans and sand sheets. Human activities including cattle crazing, wildfire resulting from introduced grass species by human, and recent urbanization processes have impacted these classic desert landforms and altered geomorphic processes. The purpose of this paper, therefore, rests in examining Anthropocene in the geomorphology of the north-central Sonoran Desert. The objectives of this paper are: i) to understand the impact of the Anthropocene on the geomorphological processes and forms through field observations; ii) to quantify the magnitude of human impacts on landscape using a published two-decade long record of erosion dataset and natural background erosion dataset in submitted manuscript at the sprawling edge of the Phoenix metropolitan region; iii) to examine how geomorphic outcome can affect the sustainability of cities through the estimation of sediment yield under the condition of urban sprawl.

5-MHz Volume Backscattering Strength Measurements from Suspended Sediment Concentrations (5 MHz 신호를 이용한 부유물의 농도에 따른 후방산란강도 측정)

  • Lee, Changil;Choi, Jee Woong
    • The Journal of the Acoustical Society of Korea
    • /
    • v.32 no.1
    • /
    • pp.14-21
    • /
    • 2013
  • The erosion, suspension, and transport of sediment frequently occur in the coastal waters and estuarine. These processes often generate the so-called fluid mud layer, which is defined as a high-concentration aqueous suspension of fine grained sediment (> 10 g/l), consisting mainly of silt and clay-size particles. Therefore the high-resolution ultrasound is mostly used to detect or monitor the fluid mud layer. Because the sound attenuation tends to increase rapidly with the suspended sediment concentration, it is necessary to consider the accurate attenuation correction to estimate the backscattering strengths from the suspended sediment layers. In this paper, the volume backscattering strengths with various suspended sediment concentrations were measured using 5-MHz ultrasound signal in a small-scale water tank. The sound attenuation due to the viscosity and scattering from suspended sediment particles was predicted by the Richard's model and applied to the sonar equation to estimate the volume backscattering strengths from the suspended sediment concentrations. For the case that the additional attenuation was not considered, the volume backscattering strengths increased to the concentration of 20 g/l, and over this point, the backscattering strengths were roughly constant. However, for the case that the attenuation due to the suspended sediment concentration was considered, the backscattering strengths increased with the concentration.