• Title/Summary/Keyword: Sediment elutriates

Search Result 3, Processing Time 0.016 seconds

Potential and Future Directions of Effect Assessment of Polluted Sediment Using Sediment Elutriates: Effects on Growth and Molecular Biomarkers on Marine Copepod (퇴적물 용출수를 이용한 오염 퇴적물의 생물영향평가 가능성과 방향: 요각류 유생의 성장 및 분자생체지표의 활용)

  • Won, Eun Ji;Gang, Yehui
    • Journal of Environmental Impact Assessment
    • /
    • v.26 no.3
    • /
    • pp.207-216
    • /
    • 2017
  • Several bioassays have been performed for assessment of the impact of polluted sediments. The direct exposure method using sediments is limited by difficulty controlling feeding and its effects on organisms. Furthermore, only macro-organisms and benthic organisms are used. To evaluate the potential application of sediment elutriate as a complementary strategy for impact assessment, copepods, small organisms with a short life cycle, were exposed to sediment elutriates, and several end-points were measured. As a result, sediment elutriates prepared from polluted sites caused growth retardation in marine copepods. In terms of molecular biomarkers, antioxidant-related and chaperone protein gene expression levels were increased in a dose- and time-dependent manner. Thus, we suggest that sediment elutriate tests can provide an effective alternative for toxicity assessment using whole sediment samples. Further studies are required to obtain sufficient data for future applications.

Effects of Sediment Elutriates on the Early Reproductive Outputs in the Pacific oyster, Crassostrea gigas

  • Jo Qtae;Moon Hyo Bang;Cho Yong Chul;Kim Kwang Soo;Choy Eun Jung;Ko Sung Chung;Song Young Chae
    • Fisheries and Aquatic Sciences
    • /
    • v.8 no.1
    • /
    • pp.27-33
    • /
    • 2005
  • This is a subsequent study to our previous finding that Pacific oysters, Crassostrea gigas, gained a so-called upper plateau concentration, around 30,000 ng/g dry weight digestive gland for benzo(a)pyrene, showed reproductive behavior but produced their ensuing reproductive outputs damaged. A serial dilution of sediment elutriates from Jinhae Bay, Korea, where pollution was progressive, were exposed to gametes of the Pacific oyster for 0, 5, 10, 20, 30, and 60 min to detail the pollutant effects on very young specimens. There was an apparent critical dilution over which adverse effects are evident. This was $10\%$ of the present sediment elutriate, corresponding to 0.3 ng/g on the basis of total polycyclic aromatic hydrocarbons (PAHs) for the oyster. Within the dilution the embryonic development was not influenced by the duration of exposure to its gamete stage. At higher dilutions over the critical dilution, occurrence of abnormality increased dependent on the pollutant dilution and the duration of exposure. Similar trends were also found in larval mortality. However, overall, the chemical toxicity was more significant to morphogenesis than to survival, suggesting a potential recruitment of the pollutants-induced abnormal larvae in the wild population to threaten the population integrity.

Stress Expression by the Maternally Transferred Xenobiotic Pollutants in the Reproductive Outputs of the Pacific Oyster, Crassostrea gigas

  • Jo, Qtae;Choy, Eun-Jung;Lee, Su-Jeong;Cho, Yong-Chul;Lee, Chu;Kim, Yoon
    • Journal of Aquaculture
    • /
    • v.18 no.3
    • /
    • pp.200-206
    • /
    • 2005
  • We previously pointed out that the polluted sediment elutriate manifestly affected the early events of reproductive outputs in the Pacific oysters, Crassostrea gigas. A serial dilution of priority xenobiotic sediment elutriates determined by gas chromatography/mass spectrometry (GC/MS) were exposed to gametes of the oyster with different stress burdens to detail the maternal stress transfer to its reproductive outputs. There was an apparent critical concentration over which survival and morphogenesis were significantly affected with more profound damage in morphogenesis. The critical concentration which drives mortality and abnormal morphogenesis of the larvae corresponded to a dilution between 10 and 20% of our elutriate. The adverse effects of the early lives by the xenobiotic exposure over the critical concentration were magnified by the maternal stress from the exposed benzo(a)pyrene (BaP), one of the priority polyaromatic hydrocarbons (PAHs) during the maturation condition. These results indicate that maternal transfer of the xenobiotic compounds from oysters living in the contaminated location might represent a significant adverse effect to their larval population of wild seeds.