DOI QR코드

DOI QR Code

Effects of Sediment Elutriates on the Early Reproductive Outputs in the Pacific oyster, Crassostrea gigas

  • Jo Qtae (National Fisheries Research and Development Institute) ;
  • Moon Hyo Bang (National Fisheries Research and Development Institute) ;
  • Cho Yong Chul (National Fisheries Research and Development Institute) ;
  • Kim Kwang Soo (National Fisheries Research and Development Institute) ;
  • Choy Eun Jung (Department of Biology, Pusan National University) ;
  • Ko Sung Chung (Korea Institute of Maritime and Fisheries Technology) ;
  • Song Young Chae (Korea Maritime University)
  • Published : 2005.03.01

Abstract

This is a subsequent study to our previous finding that Pacific oysters, Crassostrea gigas, gained a so-called upper plateau concentration, around 30,000 ng/g dry weight digestive gland for benzo(a)pyrene, showed reproductive behavior but produced their ensuing reproductive outputs damaged. A serial dilution of sediment elutriates from Jinhae Bay, Korea, where pollution was progressive, were exposed to gametes of the Pacific oyster for 0, 5, 10, 20, 30, and 60 min to detail the pollutant effects on very young specimens. There was an apparent critical dilution over which adverse effects are evident. This was $10\%$ of the present sediment elutriate, corresponding to 0.3 ng/g on the basis of total polycyclic aromatic hydrocarbons (PAHs) for the oyster. Within the dilution the embryonic development was not influenced by the duration of exposure to its gamete stage. At higher dilutions over the critical dilution, occurrence of abnormality increased dependent on the pollutant dilution and the duration of exposure. Similar trends were also found in larval mortality. However, overall, the chemical toxicity was more significant to morphogenesis than to survival, suggesting a potential recruitment of the pollutants-induced abnormal larvae in the wild population to threaten the population integrity.

Keywords

References

  1. Akcha, F., C. lzuel, P. Venier, H. Budzinski, T. Burgeot and J.F. Narbonne. 2000. Enzymatic biomarker measurement and study of DNA adduct formation in benzo(a)pyrene-contaminated mussels, Mytilus galloprovincialis. Aquat. Toxicol., 49, 269-287 https://doi.org/10.1016/S0166-445X(99)00082-X
  2. Ballschmiter, K., O. Froescheis, W.M. Jarman and G. Caillet. 1997. Contamination of the deep-sea. Mar. Pollut. Bull., 34, 288-289 https://doi.org/10.1016/S0025-326X(96)00090-2
  3. Bard, S.M. 2000. Multixenobiotic resistence as a cellular defense mechanism in aquatic organisms. Aquat. Toxicol., 48, 357-389 https://doi.org/10.1016/S0166-445X(00)00088-6
  4. Beiras, R. and E. His. 1995. Toxicity of fresh and freeze-dried hydrocarbon-polluted sediments to Crassostrea gigas embryos. Mar. Pollut. Bull., 30, 47-49 https://doi.org/10.1016/0025-326X(94)00074-J
  5. Bigger, C.A.H., A. Cheh, F. Latif, R. Fishel, K.A. Canella, G.A. Stafford, H. Yagi, D.M. Jerina and A. Dipple. 1994. DNA strand breaks induced by configurationally isometric hydrocarbon diol epoxides. Drug Metab. Rev., 26, 287-299 https://doi.org/10.3109/03602539409029798
  6. Boutet, I., A. Tanguy and D. Moraga. 2004. Response of the Pacific oyster Crassostrea gigas to hydrocarbon contamination under experimental conditions. Gene, 329, 147-157 https://doi.org/10.1016/j.gene.2003.12.027
  7. Cavalieri, E.L., E.G. Rogan, W.J. Murray and N.V.S. Ramakrishna. 1993a. Mechanistic aspects of benzo(a) pyrene metabolism. Poly. Aromat. Comp., 3, 1047-1154
  8. Cavalieri, E.L., E.G. Rogan, N.V.S. Ramakrishna and P.D. Devanesan. 1993b. Mechanisms of benzo(a)pyrene and 7,12-dimethylbenzo(a)-anthrancene activation: Qualitative aspects of the stable and depurination DNA adducts obtained from radical cations and diol epoxides. Poly. Aromat. Comp., 3, 725-731
  9. Cheung, C.C.C., G.J. Zheng, A.M.Y. Li, B.J. Richardson and P.K.S. Lam. 2001. Relationship between tissue concentrations of polycyclic aromatic hydrocarbons and anti oxidative responses of marine mussels, Perna viridis. Aquat. Toxicol., 52, 189-203 https://doi.org/10.1016/S0166-445X(00)00145-4
  10. Chu, F.L.E., P. Soudant and R.C. Hale. 2003.Relationship between PCB accumulation and reproductive output in conditioned oysters Crassostrea virginica fed a contaminated algal diet. Aquat. Toxicol., 65, 293-307 https://doi.org/10.1016/S0166-445X(03)00152-8
  11. Dethlefson, V. 1988. Status report on aquatic pollution problems in Europe. Aquat. Toxicol., 11, 259-286 https://doi.org/10.1016/0166-445X(88)90078-1
  12. Farrington, J.W., E.D. Goldberg, R.W. Risebrough, J.H. Martin and V.T. Bowen. 1983. US 'Mussel Watch' 19761978: An overview of the trace-metal, DDE, PCB, hydrocarbon and artificial radionuclide data. Environ. Sci. Technol., 17, 490-496 https://doi.org/10.1021/es00114a010
  13. Geffard, O., H. Budzinski and E. His. 2002a. The effects of elutriates from PAH and heavy metal polluted sediments on Crassostrea gigas (Thunberg) embryogenesis, larval growth and bio-accumulation by the larvae of pollutants from sedimentary origin. Ecotoxicology, II, 403-416
  14. Geffard, O., H. Budzinski, E. His, M.N.L. Seaman and P. Garrigues. 2002b. Relationships between contaminant levels in the marine sediments and their biological effects upon embryos of oysters, Crassostrea gigas. Environ. Toxicol. Chem., 21, 2310- 2318 https://doi.org/10.1897/1551-5028(2002)021<2310:RBCLIM>2.0.CO;2
  15. Geffard, O., A. Geffard, E. His and H. Budzinski. 2003. Assessment of the bioavailability and toxicity if sediment-associated polycyclic aromatic hydrocarbons and heavy metals applied to Crassostrea gigas embryos and larvae. Mar. Pollut. Bull., 46, 481-490 https://doi.org/10.1016/S0025-326X(02)00451-4
  16. Geffard, O., E. His, H. Budzinski, J.F. Chiffoleau, A. Coynel and H. Etcheber. 2004. Effects of storage method and duration on the toxicity of marine sediments to embryos of Crassostrea gigas. Environ. Pollut., 129, 457-465 https://doi.org/10.1016/j.envpol.2003.11.014
  17. His, E., M.N.L. Seaman and R. Beiras. 1997. A simplification of the bivalve embryogenesis larval development bioassay method for water quality assessment. Wat. Res., 31, 351-355 https://doi.org/10.1016/S0043-1354(96)00244-8
  18. Keppler, C. 1997. Expressionof multixenobiotic resistance proteins and total protein in the gills of the oyster, Crassostrea virginica. M.S. Thesis, University of Charleston, SC, USA
  19. Krasnoschekova, R., U. Kirso, F. Perin and P. Jacquignon. 1992. Binding of heteropolyarenes to protein. Poly. Aromat. Comp., 3, 41-49 https://doi.org/10.1080/10406639208048325
  20. Kurelec, B. 1992. The multixenobiotic resistance mechanism in aquatic organisms. Crit. Rev. Toxicol., 22, 23-43 https://doi.org/10.3109/10408449209145320
  21. Kurelec, B. and B. Pivcevic. 1991. Evidence for a multixenobiotic resistance mechanism in the mussel Mytilus galloprovincialis. Aquat. Toxicol., 19, 291-302 https://doi.org/10.1016/0166-445X(91)90054-D
  22. Law, R.J., C.A. Kelly, K.L. Baker, K.H. Langford and T. Bartlett. 2002. Polycyclic aromatic hydrocarbons in sediments, mussels and crustacea around a former gasworks site in Shoreham-by-Sea, UK. Mar. Pollut. Bull., 44, 903-911 https://doi.org/10.1016/S0025-326X(02)00119-4
  23. Livingstone, D.R., R. Arnold, J.K. Chipman, M.A. Kirchin and J. Marsh. 1990. The mixed-function oxygenase system in molluscs: Metabolism, responses to xenobiotics, and toxicity. Oceanis., 16, 331-347
  24. Maccubbin, A.E. 1994. DNA adduct analysis in fish: laboratory and field studies. In: Aquatic Toxicology: Molecular, Biochemical and Cellular Perspectives, Malins, D.C. and G.K. Ostrander, eds. Boca Raton, FL, USA, pp. 267-294
  25. Mason, R.P. and W.F. Fitzgerald. 1990. Alkylmercury species in the equatorial Pacific. Nature, 347, 457-459 https://doi.org/10.1038/347457a0
  26. McFadzen, I., N. Eufemia, C. Heather, D. Epel, M. Moore and D. Lowe. 1999. Multidrug resistance in the embryos and larvae of the mussel, Mytilus edulis. In: AElskus, A., A.A., Vogelbein, W.K., McLaughlin, and S.M. Kane eds., PRIMO 10 (Pollutant Responses in Marine Organisms), Williamsburg, VA, USA, pp. 93
  27. Melzian, B.D. 1990. Toxicity assessment of dredged materials: acute and chronic toxicity as determined by bioassays and bioaccumulation tests. In: Alzieu, C. and B. Gallenne eds., Proceedings of the International Seminar on Environmental Aspects of Dredging Activities, 27 Novemberl December 1989, Nantes, France, pp. 49-64
  28. Mitchelmore, C.L., B.J. Claudia, K. Chipman and D.R. Livingstone. 1998. Evidence for cytochrome P-450 catalysis and free radical involvement in the production of DNA strand breaks by benzo(a)pyrene and nitroaromatics in mussel (Mytilus edulis L.) digestive gland cells. Aquat. Toxicol., 41, 193-212 https://doi.org/10.1016/S0166-445X(97)00083-0
  29. Moon, H.B., H.G. Choi, S.S. Kim, S.R. Jeong, P.Y. Lee and G. Ok. 2001. Monitoring of polycyclic aromatic hydrocarbons in sediments and organisms from Korean coast. J. Fish. Sci. Technol., 4, 219-228
  30. Moon, H.B., H.G. Choi, S.S. Kim, C.K. Kang, P.Y. Lee and G. Ok. 2002. Polychlorinated dibenzo-p-dioxins and dibenzofurans in sediments from thesoutheastern coastal areas of Korea. J. Kor. Soc. Environ. Anal., 5, 41-47
  31. Moon, H.B., S.J. Lee, H.G. Choi and G. Ok. 2004. Deposition flux of dioxin-like polychlorinated biphenyls (DLPCBs) in urban environment of Busan. J. Kor. Environ. Sci., 6, 157-167
  32. Muir, D.C.G., R.J. Norstrom and M. Simon, 1988. Organochlorine contaminants in arctic food chains: Accumulation of specific polychlorinated biphenyls and chlordane- related compounds. Environ. Sci. Technol., 22, 1071-1079 https://doi.org/10.1021/es00174a012
  33. Park, D.W., Q. Jo, H.J. Lim and B. Veron. 2002. Sterol composition of dark-grown Isochrysis galbana and its implication in the seed production of Pacific oyster, Crassostrea gigas. J. Appl. Phycol., 14, 351-355 https://doi.org/10.1023/A:1022173906775
  34. Stegeman, J.J., J.J. Schlezinger, J.E. Craddock and D.E. Tillitt. 2001. Cytochrome P450IA expression in mid water fishes: Potential effects of chemical contaminants in remote oceanic zones. Environ. Sci. Technol., 35, 54-62 https://doi.org/10.1021/es0012265
  35. Stegeman, J.J., P.J. Kloeper-Sams and J.W. Farrington. 1986. Monooxygenase induction and chlorobiphenyls in the deep-sea fish Coryphaenoides armatus. Science, 231, 1287-1289 https://doi.org/10.1126/science.231.4743.1287
  36. Stegeman, J.J. 1985. Benzo(a)pyrene oxidation and microsomal enzyme activity in the mussel (Mytilus edulis) and other bivalve mollusc species from the Western North Atlantic. Mar. Biol., 89, 21-30 https://doi.org/10.1007/BF00392873
  37. Venier, P. and S. Canova. 1996. Formation of DNA adducts in the gill tissue of Mytilus galloprovincialis treated with benzo(a)pyrene. Aquat. Toxicol., 34, 119-133 https://doi.org/10.1016/0166-445X(95)00035-3
  38. Weaver, G. 1984. PCB contamination in and around New Bedford. Environ. Sci. Technol., 18, 22-27
  39. White, P. 2002. The genotoxicity of priority polycyclic aromatic hydrocarbons in the complex mixtures. Mut. Res., 515, 85-98 https://doi.org/10.1016/S1383-5718(02)00017-7

Cited by

  1. Glutathione (GSH) Response as a Metabolic Biomarker to Benzo(α)pyrene and Aroclor 1254 Exposure in the Pacific Oyster Crassostrea gigas vol.9, pp.4, 2006, https://doi.org/10.5657/fas.2006.9.4.140