• Title/Summary/Keyword: Sediment discharge

Search Result 316, Processing Time 0.024 seconds

The Distribution and Behaviors of Suspended Matters in Seomjin River Estuary - Compared with Rainy and Wet Season - (섬진강하구에서 부유물질의 분포와 거동 - 풍수기와 평수기의 비교 -)

  • Kim, Seok-Yun;Lee, Byoung Kwan
    • Journal of Korean Society on Water Environment
    • /
    • v.25 no.6
    • /
    • pp.935-942
    • /
    • 2009
  • During period of the rainy season of spring tide Aug. 2005, the suspended sediment transport rate from Seomjin River increased ten times as high as neap tide of low river discharge. During ebb tide of high terrestrial input, the grain size of suspended particles of both surface and bottom layer of the water column, showed a uni-modal distribution with a dominant peak at coarse fraction, which suggests a characteristic development of floc-sized particles of low mean effective density. On the contrary, the particles supplied toward upstream of Seomjin river from Gwangyang Bay during flood tide showed a bi-modal distribution with a secondary peak at finer fraction, possibly due to the resuspension and the deflocculation associated with the increased shear velocity at near bottom. Break-up of large flocs is also suggested by the increased mean effective density. However, settling velocity was lower during flood tide because of smaller grain size. Thus, net deposition of suspended sediment is expected at within Gwangyang Bay instead of upstream of Seomjin River, even though suspended sediment transport rate at near bottom water was three times higher than that at surface water during flood tide.

Correlation Analysis of Signal to Noise Ratio (SNR) and Suspended Sediment Concentration (SSC) in Laboratory Conditions (실험수로에서 신호대잡음비와 부유사농도의 상관관계 분석)

  • Seo, Kanghyeon;Kim, Dongsu;Son, Geunsoo
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.37 no.5
    • /
    • pp.775-786
    • /
    • 2017
  • Monitoring sediment flux is crucial especially for maintaining river systems to understand morphological behaviors. Recently, hydroacoustic backscatter (or SNR) as a surrogate to empirically estimate suspended sediment concentration has been increasingly highlighted for more efficient acquisition of sediment dataset, which is difficult throughout direct sediment sampling. However, relevant contemporary researches have focused on wide range solution applicable for large natural rivers where H-ADCPs with relatively low acoustic frequency have been widely utilized to seamlessly measure streamflow discharge. In this regard, this study aimed at investigating hydroacoustical characteristics based on a very recently released H-ADCP (SonTek SL-3000) with high acoustic frequency of 3 MHz in order to capitalize its capacity to be applied for suspended sediment monitoring in laboratory conditions. SL-3000 was tested in a laboratory flume to collect SNR in conjunction with LISST-100X for actual sediment concentration and particle distribution in both sand and silt sediment injection in various amount. Conventional algorithms to correct signal attenuations for water and sediment were carefully tested to validate whether they can be applied for SL-3000. As result of analyzing the SNR-SSC correlation trand, through further study in the future, it is confirmed that SSC can be observed indirectly by using the SNR.

Regional Distribution of Hydrocarbon Degrading Bacteria in the Sediment of South Sea, Korea (남해해역 퇴적토의 탄화수소 분해세균 분포)

  • 김상진;최성찬
    • Korean Journal of Microbiology
    • /
    • v.30 no.5
    • /
    • pp.366-370
    • /
    • 1992
  • Sediment samples were collected from the stations 0101-0921 located between N $32^{\circ}$30'~$34^{\circ}$30' and E $123^{\circ}$30'-$128^{\circ}$30' during July 31-August lO. 1988. The distributions of total heterotrophic bacteria, freshwater bacteria and hydrocarbon degrading bacteria were studied. Each bacterial distribution was in the range of $3{\times}10^{5}~9.2{\times}10^{6}CFU/cm^{3}$sediment, $3{\times}10^{3}~2.1{\times}10^{6}CFU/cm^{3}$ sediment and $2{\times}10^{4}~6.2{\times}10^{6}CFU/cm^{3}$ sediment. respectively. The percent of hydrocarbon degrading bacteria against total heterotrophic bacteria was 0.7-73,2 % which was much higher than other marine sediments reported. These values were statistically analyzed with the percent of freshwater bacteria against total heterotrophic bacteria. These two parameters were well correlated with the correlation coefficient r= 0.60058 (n=34) and P=0.OOO2. This means that the distributions of hydrocarbon degrading bacteria and freshwater bacteria in the research area were affected together by the fresh water discharge into the sea environment. Therefore it can be concluded that the distribution of hydrocarbon degrading bacteria in the sediment of South Sea was affected by petroleum hydrocarbon input from terrestrial region through rivers.

  • PDF

Hourly SWAT Watershed Modeling for Analyzing Reduction Effect of Nonpoint Source Pollution Discharge Loads (비점원오염 저감효과 분석을 위한 시단위 SWAT 유역 모델링)

  • Jang, Sun Sook;Ahn, So Ra;Choi, Joong Dae;Kim, Seong Joon
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.57 no.1
    • /
    • pp.89-97
    • /
    • 2015
  • This study is to assess the effect of non-point source pollution discharge loads between tillage and no-tillage applications for upland crop areas using SWAT (Soil and Water Assessment Tool) watershed modeling. For Byulmi-cheon small rural catchment ($1.17km^2$) located in upstream of Gyeongan-cheon watershed, the rainfall, discharge and stream water quality have been monitored in the catchment outlet since 2011. The SWAT model was calibrated and validated in hourly basis using 19 rainfall events during 2011-2013. The average Nash-Sutcliffe model efficiency and $R^2$ (determination coefficient) for streamflow were 0.67 and 0.79 respectively. Using the 10 % surface runoff reduction from experiment results for no-tillage condition in field plots of 3 % and 8 % slopes under sesami cultivation, the soil saturated hydraulic conductivity for upland crop areas was adjusted from 0.001 mm/hr to 0.0025 mm/hr in average. Under the condition, the catchment sediment, T-N (total nitrogen, TN), and T-P (total phosphorus, TP) discharge loads were reduced by 6.9 %, 7.4 %, and 7.7 % respectively.

Long-term Changes of Growth Rates and Shell Bioerosion of the Japanese Scallop related to Tumen River Discharge

  • Silina Alla V.
    • Ocean and Polar Research
    • /
    • v.25 no.1
    • /
    • pp.1-7
    • /
    • 2003
  • The purpose of this study was to determine changes in the growth rates and the degree of shell bioerosion exhibited by endolithic organisms of the Japanese scallop family, Patinopecten (Mizuhopecten) yessoensis, on the coast of Furugelm Island (Peter the Great Bay, northwest of East Sea = Sea of Japan) over the last three decades. The areas studied are affected by lumen (Tumangang) River run-off, which is enriched by organic matter and polluting agents. It was found that the linear growth rates of the Japanese scallops living along the coasts of Furugelm Island have decreased over the last three decades. The degree of bioerosion of scallop shells has significantly increased for the same period. These phenomena may be explained by a gradual increase in bottom sediment silting, organic enrichment and pollution of the areas being studied. It was found that the degree of scallop shell bioerosion increased with the scallop's age. At present, In each age group, the shells of the scallops sampled from the muddy sand showed greater erosion than the shells of individuals collected from the sandy substrate.

Application of Landscape Ecology to Watershed Management : How can We Restore Ecological Functions in Fragmented landscape\ulcorner (유역관리에서 경관생태학의 응용 : 절개된 경관의 생태적 기능을 어떻게 회복시킬 수 있을까\ulcorner)

  • Nakamura, Futoshi
    • The Korean Journal of Ecology
    • /
    • v.21 no.4
    • /
    • pp.373-382
    • /
    • 1998
  • This paper describes the ecological structure and function of riparian zone, and their historical changes with land-use. The riparian zone consists of valley floor landform and riparian vegetation. The functions discussed are attenuation of sunlight energy, input of leaves and needles, contribution of woody debris to streams, and retention of flowing material out of transport. These primary functions directly or indirectly influence water and sediment qualities of streams, bars and floodplains, and thereby aquatic biota. Temporal changes in a hydrological system and riparian ecosystem were examined with reference to land-use conversin in order to understand the linkages between these two systems in Toikanbetsu River. The influences of channelization and land-use on discharge of suspended sediment and wetland vegetation was also investigated in Kushiro Marsh. These two examples suggested that the ecological functions of riparian zone have been degraded as flood control and reclamation works have expanded in the past twenty years The author proposes river restoration planning by preserving or creating landscape elements based on the concepts of sustaining physical and ecological linkages.

  • PDF

Microorganism Contamination from Diffuse Sources and Its Impacts on Water Quality in the Geum River Basin (금강유역 비점원에서 발생하는 미생물 오염 및 수질에 대한 영향)

  • Kim, Geonha
    • Journal of Korean Society on Water Environment
    • /
    • v.22 no.3
    • /
    • pp.504-512
    • /
    • 2006
  • In order to estimate microbial contaminant discharge from diffuse sources, rainfall runoff was monitored at forestry, agriculture and urban watersheds. Total coliform and E. coli were monitored at the study watersheds as they are regulated by the environmental laws. Concentration and EMC (Event Mean Concentration) of coliform of rainfall runoff at the urban watershed were the highest followed by those from agricultural and forestry watersheds. By monitoring coliform concentrations of overlying water and sediment at five monitoring points in the downstream of the Geum River, average concentration from spring to summer was higher than those values from fall to spring. Coliform concentrations in the pore water were higher compared to those of overlying water and closely related with flow rate of the river.

Evaluation of Channel-forming Discharge for the Abandoned Channel Restoration Design of Cheongmi Stream (청미천 구하도 복원 설계를 위한 하도형성유량 산정)

  • Ji, Un;Kang, Jun-Gu;Yeo, Woon-Kwang;Han, Seung-Won
    • Journal of Korea Water Resources Association
    • /
    • v.42 no.12
    • /
    • pp.1113-1124
    • /
    • 2009
  • The abandoned channel restoration is one of methods to enhance the environmental function and ecological habitat as well as the functions of water-utilization and flood control. The channel-forming or dominant discharge must be evaluated and defined to design the cross-sectional and plane geometries of the stable and equilibrium channel for the abandoned channel restoration project. In general, bankfull discharge, specified recurrence interval discharge, and effective discharge have been used to decide the channel-forming discharge. In this study, bankfull discharge, specified recurrence interval discharge, and effective discharge were calculated and compared for the abandoned channel restoration site of Cheongmi Stream and their relations to historical bed changes were analyzed. The bankfull discharge, 488 $m^3/s$, of the abandoned channel restoration site of Cheongmi Stream was calculated using HEC-RAS data and ranged between 1.5-year and 2-year recurrence discharges. Also, the effective discharge evaluated with the sediment rating curve and mean daily discharge data is greater than the bankfull discharge. According to the survey data of 1994 and 2008, the bed elevation of the study reach was decreased over time. It is indicated that the channel bed is changing to the stable condition to allow the effective discharge.

Analysis of Effects on Soil Erosion Reduction of Various Best Management Practices at Watershed Scale (최적관리기법에 따른 토양유실 저감 효과 유역단위 분석)

  • Lee, Dong Jun;Lee, Ji Min;Kum, Donghyuk;Park, Youn Shik;Jung, Younghun;Shin, Yongchul;Jeong, Gyo-Cheol;Lee, Byeong Cheol;Lim, Kyoung Jae
    • Journal of Korean Society on Water Environment
    • /
    • v.30 no.6
    • /
    • pp.638-646
    • /
    • 2014
  • Soil erosion from agricultural fields leads to various environmental problems weakening the capabilities of flood control and ecosystem in water bodies. Regarding these problems, Ministry of Environment of South-Korea prepared various structural and non-structural best management practices (BMPs) to control soil erosion. However, a lot of efforts are required to monitor and develop BMPs. Thus, modeling techniques have been developed and utilized for these issues. This study estimated the effectiveness of BMPs which are a vegetation mat with infiltration roll and Roll type vegetation channel using Soil and Water Assessment Tool (SWAT) model through the adjustment of the conservation practice factors, P factors, for Universal Soil Loss Equation which were calculated by monitoring data collected at the segment plots. Each BMP was applied to the areas with slopes ranged from 7% to 13% in the Haeanmyeon watershed. As a result of simulation, the vegetation mat with infiltration roll and Roll type vegetation channel showed 55% and 59% efficiency of soil erosion reduction, respectively. Also, Vegetation mat with infiltration roll and Roll type vegetation channel showed each 11.2% and 11.8% efficiency in reduction of sediment discharge. These roll type vegetation channel showed greater efficiency of soil erosion reduction and sediment discharge. Based on these results, if roll type vegetation channel is widely used in agricultural fields, reduction of soil erosion and sediment discharge of greater efficiency would be expected.

Environmental Effects on the Benthic Polychaete Communities Around the Power Plant Areas in the East Sea of Korea (동해 발전소 주변의 저서다모류 군집에 영향을 미치는 환경 요인)

  • KWON, SOON HYUN;LEE, JAE HAC;YU, OK HWAN
    • The Sea:JOURNAL OF THE KOREAN SOCIETY OF OCEANOGRAPHY
    • /
    • v.22 no.1
    • /
    • pp.18-30
    • /
    • 2017
  • The East Sea is almost entirely composed of sandy facies, and the facies type is the major factor influencing benthic polychaete communities. There have been few studies of the effects of environmental factors on benthic polychaetes in thermal discharge areas consisting of different sediment types. This study identified the spatial distribution patterns based on the species composition and distribution of benthic polychaete communities, and the environmental factors influencing benthic polychaetes near power plants were investigated. The polychaete communities in the Uljin, Hupo, and Gori coastal areas near the power plants in the East Sea were seasonally investigated from August 2006 to February 2013. As a result, 283 species were collected. The dominant species were Spiophanes bombyx, Magelona japonica, Lumbrineris longifolia, and Sternaspis scutata. Spiophanes bombyx was the dominant species at Uljin and Hupo, but M. japonica was the dominant species at Gori. Two dominant species from the coastal waters of the East Sea, Lumbrineris longifolia and M. japonica, were rare in the power plant water intake or drainage areas. Cluster analysis was performed to divide the study area into groups by the total organic carbon content, sediment grain size and facies patterns. This study suggests that the community structures of polychaetes are more affected by the total organic carbon, grain size of sediment and facies than by disturbance from thermal discharge, which only affected the polychaete community near power plant drainage areas.