• Title/Summary/Keyword: Sediment and soil

Search Result 696, Processing Time 0.025 seconds

An Optimal Control Theory on Economic Benefits of Dam Management: A Case of Aswan High Dam in Egypt (최적제어 이론을 이용한 댐 토사관리방안 : 이집트 아스완 댐 사례)

  • Lee, Yoon;Kim, Dong-Yeub
    • Journal of Environmental Policy
    • /
    • v.9 no.2
    • /
    • pp.41-55
    • /
    • 2010
  • This paper analyzes optimal watershed management focusing on reservoir-level sediment removal techniques. Although dams and reservoirs provide several benefits, sedimentation may reduce their storage capacity. As of today, the Aswan High Dam (AHD) in Egypt faces approximately 76% reduced life of the reservoir. Since the AHD is the major fresh water source in Egypt, sustainable use of this resource is extremely important. A model is developed to simultaneously determine optimal sediment removal strategies for upstream soil conservation efforts and reservoir-level sediment control. Two sediment removal techniques are considered: mechanical dredging and hydro-suction sediment removal system (HSRS). Moreover, different levels of upstream soil conservation efforts have introduced to control soil erosion, which is a major contributor of reservoir storage capacity reduction. We compare a baseline case, which implies no management alternative, to non-cooperative and social planners' solution. Our empirical results indicate that the socially optimal sediment removal technique is a mechanical dredging with unconstrained amount with providing a sustainable life of the reservoir. From the empirical results, we find that social welfare can be as high as $151.01 billion, and is sensitive to interest rates and agricultural soil loss.

  • PDF

Effect of the Fate Mechanisms of Phenol on the Remediation Efficiency of In-Situ Capping Applied to Sediment Contaminated by Phenol Chemical Spills (페놀 화학사고 발생으로 오염된 퇴적물에서 페놀의 거동 기작이 원위치 피복의 정화 효율에 미치는 영향)

  • Lee, Aleum;Choi, Yongju
    • Journal of Soil and Groundwater Environment
    • /
    • v.27 no.1
    • /
    • pp.60-70
    • /
    • 2022
  • We evaluated the performance of in-situ capping to prevent the release of phenol, one of hazardous chemicals of concern for their impact on sediment. Sediment near the estuary of Hyeongsan River, Korea, and commercially-available sand were collected to evaluate their physical properties and phenol sorption characteristics. Biodegradation kinetics of phenol spiked into the sediment was evaluated under freshwater and estuarine salinity conditions. These experimental measurements were parameterized and used as input parameters for executing CapSim, a software predicting the performance of in-situ capping. The CapSim simulation demonstrated that capping with 50-cm sand reduced the phenol release by several orders of magnitude over 0.25- and 1-year duration for almost all simulation scenarios. The variables tested, i.e., cap thickness, pore-water movement, and biodegradation rate, showed high correlation to each other to influence the extent of phenol release from sediment to the water column. The findings and the framework employed to evaluate the performance of in-situ capping in this study can be adopted to determine whether in-situ capping is appropriate remedial approach at sediment sites impacted by hazardous chemicals due to accidental spills.

Evaluation of SWAT Applicability to Simulation of Sediment Behaviois at the Imha-Dam Watershed (임하댐 유역의 유사 거동 모의를 위한 SWAT 모델의 적용성 평가)

  • Park, Younshik;Kim, Jonggun;Park, Joonho;Jeon, Ji-Hong;Choi, Dong Hyuk;Kim, Taedong;Choi, Joongdae;Ahn, Jaehun;Kim, Ki-sung;Lim, Kyoung Jae
    • Journal of Korean Society on Water Environment
    • /
    • v.23 no.4
    • /
    • pp.467-473
    • /
    • 2007
  • Although the dominant land use at the Imha-dam watershed is forest areas, soil erosion has been increasing because of intensive agricultural activities performed at the fields located along the stream for easy-access to water supply and relatively favorable topography. In addition, steep topography at the Imha-dam watershed is also contributing increased soil erosion and sediment loads. At the Imha-dam watershed, outflow has increased sharply by the typhoons Rusa and Maemi in 2002, 2003 respectively. In this study, the Soil and Water Assessment Tool (SWAT) model was evaluated for simulation of flow and sediment behaviors with long-term temporal and spatial conditions. The precipitation data from eight precipitation observatories, located at Ilwol, Subi and etc., were used. There was no significant difference in monthly rainfall for 8 locations. However, there was slight differences in rainfall amounts and patterns in 2003 and 2004. The topographical map at 1:5000 scale from the National Geographic Information Institute was used to define watershed boundaries, the detailed soil map at 1:25,000 scale from the National Institute of Highland Agriculture and the land cover data from the Korea Institute of Water and Environment were used to simulate the hydrologic response and soil erosion and sediment behaviors. To evaluate hydrologic component of the SWAT model, calibration was performed for the period from Jan. 2002 to Dec. 2003, and validation for Jan. 2004 to Apr. 2005. The $R^2$ value and El value were 0.93 and 0.90 respectively for calibration period, and the $R^2$ value and El value for validation were 0.73 and 0.68 respectively. The $R^2$ value and El value of sediment yield data with the calibrated parameters was 0.89 and 0.84 respectively. The comparisons with the measured data showed that the SWAT model is applicable to simulate hydrology and sediment behaviors at Imha dam watershed. With proper representation of the Best Management Practices (BM Ps) in the SWAT model, the SWAT can be used for pre-evaluation of the cost-effective and sustainable soil erosion BMPs to solve sediment issues at the Imha-dam watershed. In Korea, the Universal Soil Loss Equation (USLE) has been used to estimate the soil loss for over 30 years. However, there are limitations in the field scale mdel, USLE when applied for watershed. Also, the soil loss changes temporarily and spatially, for example, the Imha-dam watershed. Thus, the SW AT model, capable of simulating hydrologic and soil erosion/sediment behaviors temporarily and spatially at watershed scale, should be used to solve the muddy water issues at the Imha-dam watershed to establish more effective muddy water reduction countermeasure.

Development and Application of SATEEC L Module for Slope Length Adjustment Based on Topography Change

  • Kang, Hyun-Woo;Kim, Ki-Sung;Park, Youn-Shik;Kim, Nam-Won;Ok, Yong-Sik;Kim, Jong-Gun;Choi, Yun-Ho;Lim, Kyoung-Jae
    • Korean Journal of Environmental Agriculture
    • /
    • v.28 no.2
    • /
    • pp.113-124
    • /
    • 2009
  • Severe sediment-laden problem has been the hot issue in Korea. It was assumed that agricultural activities and landslides were the primary causes of these problems in watersheds. The USLE-based systems have been widely used in soil erosion studies. However the GIS-based USLE modeling system has limitation in USLE L factors. In this study, the SATEEC L module was developed to reflect the slope length segmentations in the fields. The SATEEC L module was applied to the study watershed to analyze the effects of using the SATEEC L module on estimated sediment. As shown in the comparisons between SATEEC estimated sediment with SWAT values, the SATEEC GA-SDR module derives the SDR with reasonably acceptable accuracies. However, it is worthy to note that the soil erosion using the SATEEC L module for the study watershed was lower than that without using the SATEEC L module by 25%, although the SATEEC estimated sediment values with and without using L module match the SWAT sediment values with similar accuracies. This is because the SATEEC GA-SDR module estimates lower SDR in case of greater soil erosion estimation without the L module and greater SDR in case of lower soil erosion estimation with the L module. This indicates that the SATEEC input parameters, especially L factor, need to be prepared with care for accurate estimation of SDR at a watershed scale and for accurate evaluation of BMPs in the watershed.

Study on Quantifying Erosion Control Function of Forest (산림의 토사유출 방지기능에 관한 연구)

  • Youn, Ho-Joong;Lee, Chang-Woo;Jeong, Yongho
    • Journal of the Korean Society of Environmental Restoration Technology
    • /
    • v.10 no.1
    • /
    • pp.36-43
    • /
    • 2007
  • This study was carried out to know how erosion control function of forests varies as forests develop in watersheds. The erosion control function among the forest welfare functions can be estimated by comparing sediment yield in stocked with non-stocked area. Sediment yield of reservoirs in stocked area were collected from farmland improvement associations. The sediment yields in non-stocked area were using USLE (Universal Soil Loss Equation) in the same reservoirs. Forests' erosion control function estimated by differences of the sediment yield between stocked and non-stocked area was static model because of no consideration on forest aging. Dynamic model was developed to consider a forest stand age. The model comprises the relationship between average forest age in watershed and sediment yield. The amount of sediment yield was different depending mother rocks. It decreased exponentially according to the forest's grow up. In case of igneous rock, the volume of sediment yield $Y_{ig}=1.4431e\;^{0.023x}$(x=average forest age), metamorphic rock $Y_{me}=4.7115e\;^{0.0694x}$, and sedimentary rock $Y_{se}=1.2808e\;^{0.028x}$.

KDICical Characteristics and Microbial Activity of Streams Contaminated by The Abandoned Coal Mine Drainage (폐탄광 배수에 의해 오염된 하천의 화학적 특성과 미생물 활성)

  • Cho, Kyoung-Suk;Ryu, Hee-Wook;Chang, Young-Keun
    • The Korean Journal of Ecology
    • /
    • v.19 no.5
    • /
    • pp.365-373
    • /
    • 1996
  • A survey was carried out to investigate the contamination of streams by the acid mine drainage originated from the abandoned coal mines and coal refuse piles. The physico-KDICical characteristics such as pH, sulfate and elements concentrations in the water and sediment in streams were analyzed. Microbial activity in the sediment was evaluated by measuring dehydrogenase activities. At sites contaminated by acid mine drainage, the pH of the water and sediment declined to acidic range from neutral due to the accumulation of sulfate. The dehydrogenase activity ranged from 12 to $170{\mu}g-TPF{\cdot}g-dry\;soil^{-1}{\cdot}24h^{-1}$ at the contaminated sites, whereas uncontaminated sites had activities of 1,176~4,259 ${\mu}g-TPF{\cdot}g-dry\;soil^{-1}{\cdot}24h^{-1}$. The dehydrogenase activity was significantly affected by low pH of the sediment, indicating that high concentration of sulfate inhibited microbial activity. The concentrations of heavy metals such as Pb and Fe in contaminated sdeiment (37~46 ppm Pb; 46,000~464,000 ppm Fe) were much higher than those in the uncontaminated sediment. The concentration of Al in the contaminated water acidfied by coal mine drainage was in the range of 11 to 42 ppm. Compared with those in the uncontaminated sediment, the concentrations of Mn, Mg and Ca in contaminated sediment were low because of the leaching from soil to water by the acidfied stream water.

  • PDF

Estimation of Sediment Yield to Asan Bay Using the USLE and GIS (GIS와 USLE를 이용한 아산만 유입 유사량 추정)

  • Kim, Sang-Min;Park, Seung-Woo;Kang, Moon-Seong
    • Journal of Korea Water Resources Association
    • /
    • v.36 no.6
    • /
    • pp.1059-1068
    • /
    • 2003
  • Geographic Information System (GIS) combined with Universal Soil Loss Equation (USLE) was used to estimate the soil erosion of Asan Bay experiment watershed in Korea. Spatial data for each USLE factors were obtained from the Landsat-5 TM remote sensing images and 1/25,000 scale digital contour maps. Sediment yield to Asan Bay was estimated by the sediment delivery ratio and trap efficiency. The estimated sediment yield was compared with observed on the Asan and Sapgyo estuary sub-watershed within Asan Bay experimental watershed for the period from 1981 to 2000. The calculated total annual sediment yields from Asan and Sapgyo estuary sub-watershed to Asan Bay were 5,665tonnes/yr and 6,766tonnes/yr, respectively. The measured sediment yields were 12,937tonnes/yr and 12,395tonnes/yr, respectively on an average.

Simulation of the Best Management Practice Impacts on Nonpoint Source Pollutant Reduction in Agricultural Area using STEPL WEB Model (STEPL WEB 모형을 이용한 농촌지역 비점오염원저감 대책 모의)

  • Park, Youn Shik;Kum, Dong Hyuk;Jung, Young Hun;Cho, Ja Pil;Lim, Kyoung Jae;Kim, Ki Sung
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.56 no.5
    • /
    • pp.21-27
    • /
    • 2014
  • Sediment-laden water is problematic in aquatic ecosystem and for hydraulic structures in a watershed, and agriculture area in a watershed is one of source areas of nonpoint source (NPS), since soil surface typically exposures due to agricultural activities. Especially, severe sediment might flow into stream when agricultural area is located near stream like the Imha-dam watershed. Soil erosion is affected by precipitation, therefore there is a need to consider precipitation characteristics in soil erosion and best management practices (BMPs) simulation. The Web-based Spreadsheet Tool for the Estimation of Pollutant Load (STEPL WEB) allows estimating long-term sediment loads and the impact of best management practices to reduce sediment loads. STEPL WEB and predicted precipitation data by MIROC-ESM model was used to estimate sediment loads and its reduction by filter strip and conversion of agricultural area to forest in the future 30 years. The result indicates that approximately 70 % of agricultural area requires filter strip installation or that approximately 50 % of agricultural area needs to be converted to forest, for 41 % of sediment load reduction.

Estimation of Sediment Delivery Ratio in Upper Geum River Basin Using Watershed Model (유역모형을 이용한 금강상류 유역의 유사이송율 산정)

  • Kim, Tae Geun;Kim, Min Joo
    • Journal of Environmental Impact Assessment
    • /
    • v.22 no.6
    • /
    • pp.695-703
    • /
    • 2013
  • Soil erosion and sediment delivery ratio(SDR) were estimated by using HSPF model in 3 tributaries of upper stream of Geum river-basin. Meteorological data and other input data were constructed from 2006 to 2011 year by the HSPF model. Flow and suspended solid results were relatively matched with the measurement data through the calibration and validation of the model. Soil erosion was proportional to the amount of rainfall and the area of watershed based on the results of model calibration and validation. SDR in Moojunamdea stream was the highest and one in Cho stream was the lowest. This was effected by the geographical characteristic. SDR was 17.6% Moojunamdea stream, 9.1% Cho stream and 13.2 % Bocheong stream. As the SDR was effected by watershed area and shape factor in this study area.

Strategic Prospects of Environmental Restoration of Stream Side in Japan(III) - With a Special Reference to the Forest Road, Forest Conservation and Erosion Control - (일본(日本)에서 계류변(溪流邊)의 환경복원(環境復元) 발전전략(發展戰略)(III) - 임도(林道) 및 치산(治山)·사방(砂防)을 중심(中心)으로 -)

  • Park, Jae-Hyeon;Woo, Bo-Myeong;Lee, Heon-Ho
    • Journal of the Korean Society of Environmental Restoration Technology
    • /
    • v.3 no.3
    • /
    • pp.113-125
    • /
    • 2000
  • This study was carried out to introduce current status and development strategy for an environmental restoration of stream side in Japan, and to consider a methodology which could be effectively applied for the environmental restoration of stream side in Korea. The strategy prospects of environmental restoration in Japan were summarized as follows : 1. When we establish the long term erosion control planning, we should make detail planning after considering of a certain block of watershed units. Because most of the disaster is caused by soil movement which was occurred by water contents. 2. Nowadays, the general torrent erosion control planning system in Japan focused on reducing the sediment such as by placement of erosion control facility and by restoration of afforestation, after calculation of several factors including expected amount of sediment, and the different amount of planned sediment and allowable sediment. 3. In the past, the goal of forest conservation and erosion control planing was to fix the amount of soil movement by construction of permanent facilities. While, the goal of forest conservation and erosion control planning in the future needs to change the techniques to a small and middle scale's soil movement which could prevent soil movement from large scale of soil disasters, but allow soil movement effectively. Also, it is considered to change erosion control dams from non passing type to passing type. 4. Restoration of stream-side ecology, erosion control for the conservation of ecology should be planned and conducted cautiously based on concepts of ecology conservation and development of environmentally sound techniques.

  • PDF